Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 20(2): 1101-1109, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31944125

RESUMO

Oxide heterostructures have attracted a lot of interest because of their rich exotic phenomena and potential applications. Recently, a greatly enhanced tunneling electroresistance (TER) of ferroelectric tunnel junctions (FTJs) has been realized in such heterostructures. However, our understanding on the electronic structure of resistance response with polarization reversal and the origin of huge TER is still lacking. Here, we report on electronic structures, particularly at the interface and surface, and the control of the spontaneous polarization of BaTiO3 films by changing the termination of a SrTiO3 substrate. Interestingly, unusual electron and hole midgap states are concurrently formed and accompanied by orbital reconstructions, which determine the ferroelectric polarization orientation in the BaTiO3/SrTiO3. Such unusual midgap states, which yield a strong electronic screening effect, reduce the ferroelectric barrier width and height, and pin the ferroelectric polarization, lead to a dramatic enhancement of the TER effect. The midgap states are also observed in BaTiO3 films on electron-doped Nb/SrTiO3 revealing its universality. Our result provides new insight into the origin of the huge TER effect and opens a new route for designing ferroelectric tunnel junction-based devices with huge TER through interface engineering.

2.
Nat Nanotechnol ; 14(10): 939-944, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31501531

RESUMO

The electrical switching of magnetization through spin-orbit torque (SOT)1 holds promise for application in information technologies, such as low-power, non-volatile magnetic memory. Materials with strong spin-orbit coupling, such as heavy metals2-4 and topological insulators5,6, can convert a charge current into a spin current. The spin current can then execute a transfer torque on the magnetization of a neighbouring magnetic layer, usually a ferromagnetic metal like CoFeB, and reverse its magnetization. Here, we combine a ferromagnetic transition metal oxide7 with an oxide with strong spin-orbit coupling8 to demonstrate all-oxide SOT devices. We show current-induced magnetization switching in SrIrO3/SrRuO3 bilayer structures. By controlling the magnetocrystalline anisotropy of SrRuO3 on (001)- and (110)-oriented SrTiO3 (STO) substrates, we designed two types of SOT switching schemes. For the bilayer on the STO(001) substrate, a magnetic-field-free switching was achieved, which remained undisturbed even when the external magnetic field reached 100 mT. The charge-to-spin conversion efficiency for the bilayer on the STO(110) substrate ranged from 0.58 to 0.86, depending on the directionality of the current flow with respect to the crystalline symmetry. All-oxide SOT structures may help to realize field-free switching through a magnetocrystalline anisotropy design.

3.
Nat Commun ; 10(1): 3052, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296861

RESUMO

The Rashba effect plays important roles in emerging quantum materials physics and potential spintronic applications, entailing both the spin orbit interaction (SOI) and broken inversion symmetry. In this work, we devise asymmetric oxide heterostructures of LaAlO3//SrTiO3/LaAlO3 (LAO//STO/LAO) to study the Rashba effect in STO with an initial centrosymmetric structure, and broken inversion symmetry is created by the inequivalent bottom and top interfaces due to their opposite polar discontinuities. Furthermore, we report the observation of a transition from the cubic Rashba effect to the coexistence of linear and cubic Rashba effects in the oxide heterostructures, which is controlled by the filling of Ti orbitals. Such asymmetric oxide heterostructures with initially centrosymmetric materials provide a general strategy for tuning the Rashba SOI in artificial quantum materials.

4.
ACS Appl Mater Interfaces ; 11(33): 30446-30452, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31347362

RESUMO

To realize high-speed nonvolatile magnetic memory with low energy consumption, electric switching of perpendicular magnetization by spin-orbit torque in the heavy metal/ferromagnetic (HM/FM) structure has recently attracted intensive attention. Conventionally, an external in-plane magnetic field for breaking the symmetry is required for achieving electric switching of perpendicular magnetization. However, electric switching without external field is the prerequisite for the integration of magnetic functionality into the integrated circuit devices. Here, we propose a new method of utilizing a W wedge in the Pt/W/FM structure to induce a spin current gradient, which can result in an in-plane equivalent field along the wedge thickness gradient direction. We experimentally demonstrate the deterministic magnetization switching of perpendicular Co/Ni multilayers without external magnetic field when the electric current is along the wedge thickness gradient direction. Our findings shed light on free field electric switching of magnetization by a new physical parameter-an asymmetric spin current induced by a bilayer wedge structure.

5.
Nat Commun ; 10(1): 3149, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31316069

RESUMO

Transition metal oxides exhibit strong structure-property correlations, which has been extensively investigated and utilized for achieving efficient oxygen electrocatalysts. However, high-performance oxide-based electrocatalysts for hydrogen evolution are quite limited, and the mechanism still remains elusive. Here we demonstrate the strong correlations between the electronic structure and hydrogen electrocatalytic activity within a single oxide system Ti2O3. Taking advantage of the epitaxial stabilization, the polymorphism of Ti2O3 is extended by stabilizing bulk-absent polymorphs in the film-form. Electronic reconstructions are realized in the bulk-absent Ti2O3 polymorphs, which are further correlated to their electrocatalytic activity. We identify that smaller charge-transfer energy leads to a substantial enhancement in the electrocatalytic efficiency with stronger hybridization of Ti 3d and O 2p orbitals. Our study highlights the importance of the electronic structures on the hydrogen evolution activity of oxide electrocatalysts, and also provides a strategy to achieve efficient oxide-based hydrogen electrocatalysts by epitaxial stabilization of bulk-absent polymorphs.

6.
Small ; 15(24): e1901423, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31045332

RESUMO

Memristors with nonvolatile memory characteristics have been expected to open a new era for neuromorphic computing and digital logic. However, existing memristor devices based on oxygen vacancy or metal-ion conductive filament mechanisms generally have large operating currents, which are difficult to meet low-power consumption requirements. Therefore, it is very necessary to develop new materials to realize memristor devices that are different from the mechanisms of oxygen vacancy or metal-ion conductive filaments to realize low-power operation. Herein, high-performance and low-power consumption memristors based on 2D WS2 with 2H phase are demonstrated, which show fast ON (OFF) switching times of 13 ns (14 ns), low program current of 1 µA in the ON state, and SET (RESET) energy reaching the level of femtojoules. Moreover, the memristor can mimic basic biological synaptic functions. Importantly, it is proposed that the generation of sulfur and tungsten vacancies and electron hopping between vacancies are dominantly responsible for the resistance switching performance. Density functional theory calculations show that the defect states formed by sulfur and tungsten vacancies are at deep levels, which prevent charge leakage and facilitate the realization of low-power consumption for neuromorphic computing application.

7.
ACS Appl Mater Interfaces ; 11(20): 18654-18661, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31038906

RESUMO

As artificial synapses in biomimetics, memristors have received increasing attention because of their great potential in brain-inspired neuromorphic computing. The use of biocompatible and degradable materials as the active resistive layer is promising in memristor fabrication. In this work, we select egg albumen as the resistive layer to fabricate flexible tungsten/egg albumen/indium tin oxide/polyethylene terephthalate devices, which can operate normally under mechanical bending without significant performance degradation. This proposed memristor device exhibits a transparency of more than 90% under visible light with a wavelength range of 230-850 nm. Moreover, by changing amplitudes of pulse voltage instead of intervals, paired-pulse facilitation can be transmitted to paired-pulse depression, which can faithfully mimic dynamical balance of Ca2+ concentration shaped by voltage-sensitive calcium channels. The device resistance can be modulated gradually by applied pulse trains to mimic certain neural bionic behaviors, including excitatory postsynaptic current, short-term plasticity (STP) and long-term plasticity (LTP), and transitions between STP and LTP. The reasons behind these behaviors are analyzed through power consumption calculation. Excellent biosimulation characteristics have been demonstrated in this egg albumen-based memristor device, which is desirable in biocompatible and dissolvable electronics for flexible artificial neuromorphic systems.


Assuntos
Albuminas/química , Eletrônica , Polietilenotereftalatos/química , Compostos de Estanho/química , Tungstênio/química , Animais , Galinhas
8.
Adv Mater ; 31(27): e1901386, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31099075

RESUMO

Interface-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking are of importance for fundamental physics and device applications. How interfaces affect the interplay between charge, spin, orbital, and lattice degrees of freedom is the key to boosting device performance. In LaMnO3 /SrTiO3 (LMO/STO) polar-nonpolar heterostructures, electronic reconstruction leads to an antiferromagnetic to ferromagnetic transition, making them viable for spin filter applications. The interfacial electronic structure plays a critical role in the understanding of the microscopic origins of the observed magnetic phase transition, from antiferromagnetic at 5 unit cells (ucs) of LMO or below to ferromagnetic at 6 ucs or above, yet such a study is missing. Here, an atomic scale understanding of LMO/STO ambipolar ferromagnetism is offered by quantifying the interface charge distribution and performing first-principles density functional theory (DFT) calculations across this abrupt magnetic transition. It is found that the electronic reconstruction is confined within the first 3 ucs of LMO from the interface, and more importantly, it is robust against oxygen nonstoichiometry. When restoring stoichiometry, an enhanced ferromagnetic insulating state in LMO films with a thickness as thin as 2 nm (5 uc) is achieved, making LMO readily applicable as barriers in spin filters.

9.
Sci Adv ; 5(5): eaau6696, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31093522

RESUMO

Spin-orbit torque (SOT) offers promising approaches to developing energy-efficient memory devices by electric switching of magnetization. Compared to other SOT materials, metallic antiferromagnet (AFM) potentially allows the control of SOT through its magnetic structure. Here, combining the results from neutron diffraction and spin-torque ferromagnetic resonance experiments, we show that the magnetic structure of epitaxially grown L10-IrMn (a collinear AFM) is distinct from the widely presumed bulk one. It consists of twin domains, with the spin axes orienting toward [111] and [-111], respectively. This unconventional magnetic structure is responsible for much larger SOT efficiencies up to 0.60 ± 0.04, compared to 0.083 ± 0.002 for the polycrystalline IrMn. Furthermore, we reveal that this magnetic structure induces a large isotropic bulk contribution and a comparable anisotropic interfacial contribution to the SOT efficiency. Our findings shed light on the critical roles of bulk and interfacial antiferromagnetism to SOT generated by metallic AFM.

10.
Adv Mater ; 31(21): e1900776, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30957913

RESUMO

2D transition metal dichalcogenides have attracted much attention in the field of spintronics due to their rich spin-dependent properties. The promise of highly compact and low-energy-consumption spin-orbit torque (SOT) devices motivates the search for structures and materials that can satisfy the requirements of giant perpendicular magnetic anisotropy (PMA) and large SOT simultaneously in SOT-based magnetic memory. Here, it is demonstrated that PMA and SOT in a heavy metal/transition metal ferromagnet structure, Pt/[Co/Ni]2 , can be greatly enhanced by introducing a molybdenum disulfide (MoS2 ) underlayer. According to first-principles calculation and X-ray absorption spectroscopy (XAS), the enhancement of the PMA is ascribed to the modification of the orbital hybridization at the interface of Pt/Co due to MoS2 . The enhancement of SOT by the role played by MoS2 is explained, which is strongly supported by the identical behavior of SOT and PMA as a function of Pt thickness. This work provides new possibilities to integrate 2D materials into promising spintronics devices.

11.
Nano Lett ; 19(5): 3057-3065, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30964306

RESUMO

Complex oxide thin-film heterostructures often exhibit magnetic properties different from those known for bulk constituents. This is due to the altered local structural and electronic environment at the interfaces, which affects the exchange coupling and magnetic ordering. The emergent magnetism at oxide interfaces can be controlled by ferroelectric polarization and has a strong effect on spin-dependent transport properties of oxide heterostructures, including magnetic and ferroelectric tunnel junctions. Here, using prototype La2/3Sr1/3MnO3/BaTiO3 heterostructures, we demonstrate that ferroelectric polarization of BaTiO3 controls the orbital hybridization and magnetism at heterointerfaces. We observe changes in the enhanced orbital occupancy and significant charge redistribution across the heterointerfaces, affecting the spin and orbital magnetic moments of the interfacial Mn and Ti atoms. Importantly, we find that the exchange coupling between Mn and Ti atoms across the interface is tuned by ferroelectric polarization from ferromagnetic to antiferromagnetic. Our findings provide a viable route to electrically control complex magnetic configurations at artificial multiferroic interfaces, taking a step toward low-power spintronics.

12.
ACS Appl Mater Interfaces ; 11(13): 12941-12947, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30834739

RESUMO

Epitaxial strain can cause both lattice distortion and oxygen nonstoichiometry, effects that are strongly coupled at heterojunctions of complex nickelate oxides. Here we decouple these structural and chemical effects on the oxygen evolution reaction (OER) by using a set of coherently strained epitaxial NdNiO3 films. We show that within the regime where oxygen vacancies (VO) are negligible, compressive strain is favorable for the OER whereas tensile strain is unfavorable; the former induces orbital splitting, resulting in a higher occupancy in the d3 z2- r2 orbital and weaker Ni-O chemisorption. However, when the tensile strain is sufficiently large to promote VO formation, an increase in the OER is also observed. The partial reduction of Ni3+ to Ni2+ due to VO makes the eg occupancy slightly larger than unity, which is thought to account for the increased OER activity. Our work highlights that epitaxial-strain-induced lattice distortion and VO generation can be individually or collectively exploited to tune OER activity, which is important for the predictive synthesis of high-performance electrocatalysts.

13.
Adv Mater ; 31(8): e1807008, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30614567

RESUMO

Topological Hall effect (THE), appearing as bumps and/or dips in the Hall resistance curves, is considered as a hallmark of the skyrmion spin texture originated from the inversion symmetry breaking and spin-orbit interaction. Recently, Néel-type skyrmion is proposed based on the observed THE in 5d transition metal oxides heterostructures such as SrRuO3 /SrIrO3 bilayers, where the interfacial Dzyaloshinskii-Moriya interaction (DMI), due to the strong spin-orbit coupling (SOC) in SrIrO3 and the broken inversion symmetry at the interface, is believed to play a significant role. Here the emergence of THE in SrRuO3 single layers with thickness ranging from 3 to 6 nm is experimentally demonstrated. It is found that the oxygen octahedron rotation in SrRuO3 also has a significant effect on the observed THE. Furthermore, the THE may be continuously tuned by an applied electrical field. It is proposed that the large SOC of Ru ions together with the broken inversion symmetry, mainly from the interface, produce the DMI that is responsible for the observed THE. The emergence of the gate-tunable DMI in SrRuO3 single layer may stimulate further investigations of new spin-orbit physics in strong SOC oxides.

14.
Mol Plant Pathol ; 20(2): 270-286, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30264924

RESUMO

Rhg1 (resistance to Heterodera glycines 1) is an important locus that contributes to resistance against soybean cyst nematode (SCN; Heterodera glycines Ichinohe), which is the most economically damaging disease of soybean worldwide. Simultaneous overexpression of three genes encoding a predicted amino acid transporter, an α-soluble N-ethylmaleimide-sensitive factor attachment protein (α-SNAP) and a predicted wound-induced protein resulted in resistance to SCN provided by this locus. However, the roles of two of these genes (excluding α-SNAP) remain unknown. Here, we report the functional characterization of Glyma.18G022400, a gene at the Rhg1 locus that encodes the predicted amino acid transporter Rhg1-GmAAT. Although the direct role of Rhg1-GmAAT in glutamate transport was not demonstrated, multiple lines of evidence showed that Rhg1-GmAAT impacts glutamic acid tolerance and glutamate transportation in soybean. Transcriptomic and metabolite profiling indicated that overexpression of Rhg1-GmAAT activated the jasmonic acid (JA) pathway. Treatment with a JA biosynthesis inhibitor reduced the resistance provided by the Rhg1-containing PI88788 to SCN, which suggested that the JA pathway might play a role in Rhg1-mediated resistance to SCN. Our results could be helpful for the clarification of the mechanism of resistance to SCN provided by Rhg1 in soybean.


Assuntos
Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Soja/parasitologia , Tylenchoidea/patogenicidade , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Resistência à Doença/efeitos dos fármacos , Glutamatos/metabolismo , Doenças das Plantas/microbiologia , Soja/metabolismo , Tylenchoidea/metabolismo
15.
Adv Mater ; 31(7): e1805284, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30589113

RESUMO

With the advent of the era of big data, resistive random access memory (RRAM) has become one of the most promising nanoscale memristor devices (MDs) for storing huge amounts of information. However, the switching voltage of the RRAM MDs shows a very broad distribution due to the random formation of the conductive filaments. Here, self-assembled lead sulfide (PbS) quantum dots (QDs) are used to improve the uniformity of switching parameters of RRAM, which is very simple comparing with other methods. The resistive switching (RS) properties of the MD with the self-assembled PbS QDs exhibit better performance than those of MDs with pure-Ga2 O3 and randomly distributed PbS QDs, such as a reduced threshold voltage, uniformly distributed SET and RESET voltages, robust retention, fast response time, and low power consumption. This enhanced performance may be attributed to the ordered arrangement of the PbS QDs in the self-assembled PbS QDs which can efficiently guide the growth direction for the conducting filaments. Moreover, biosynaptic functions and plasticity, are implemented successfully in the MD with the self-assembled PbS QDs. This work offers a new method of improving memristor performance, which can significantly expand existing applications and facilitate the development of artificial neural systems.

16.
J Nematol ; 50(1): 41-50, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-30335911

RESUMO

Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is a serious soybean pathogen worldwide. HG Type 0 had been a predominant SCN in Heilongjiang province, the largest soybean (Glycine max L.) producing region in China. Recently, increased virulence on resistant cultivars originally developed for resistance to HG Type 0 was observed in fields. In order to identify new cultivars resistant to local SCN populations, two soil samples were collected from two counties (Anda and Wuchang) in which increased virulence on resistant cultivars occurred, and single-cyst cultures from each soil sample were maintained for more than five generations. Two single-cyst cultures from the Anda sample were identified as HG Type 1.2.3.5.6.7 and HG Type 1.3, and one single-cyst culture from Wuchang was identified as HG Type 2.5.7. Then 18 soybean genotypes, including 11 local cultivars originally developed for resistance to HG Type 0, were used to evaluate resistance response to the three identified SCN populations. Various levels of resistance or susceptibility to the three SCN populations were observed among 18 genotypes. Two tests produced similar results for the three SCN populations. Both 'Kangxian12' and 'Kangxian13' showed resistance or moderate resistance to HG Type 2.5.7, HG Type 1.2.3.5.6.7 and HG Type 1.3. The germplasm '09-138' was resistant to HG Type 1.3 and HG Type 1.2.3.5.6.7. Cultivars with 'Peking'-resistance were resistant or moderately resistant to HG Type 2.5.7 in both tests except for 'Kangxian8' in test 1. The identified resistant varieties would be valuable sources of breeding materials for resistance against multiple SCN populations.

17.
Nano Lett ; 18(10): 6340-6346, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30192558

RESUMO

Ferroelectric thin film has attracted great interest for nonvolatile memory applications and can be used in either ferroelectric Schottky diodes or ferroelectric tunneling junctions due to its promise of fast switching speed, high on-to-off ratio, and nondestructive readout. Two-dimensional α-phase indium selenide (In2Se3), which has a modest band gap and robust ferroelectric properties stabilized by dipole locking, is an excellent candidate for multidirectional piezoelectric and switchable photodiode applications. However, the large-scale synthesis of this material is still elusive, and its performance as a ferroresistive memory junction is rarely reported. Here, we report the low-temperature molecular-beam epitaxy (MBE) of large-area monolayer α-In2Se3 on graphene and demonstrate the use of α-In2Se3 on graphene in ferroelectric Schottky diode junctions by employing high-work-function gold as the top electrode. The polarization-modulated Schottky barrier formed at the interface exhibits a giant electroresistance ratio of 3.9 × 106 with a readout current density of >12 A/cm2, which is more than 200% higher than the state-of-the-art technology. Our MBE growth method allows a high-quality ultrathin film of In2Se3 to be heteroepitaxially grown on graphene, thereby simplifying the fabrication of high-performance 2D ferroelectric junctions for ferroresistive memory applications.

18.
Adv Mater ; 30(47): e1802439, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30133012

RESUMO

Complex oxide interfaces have mesmerized the scientific community in the last decade due to the possibility of creating tunable novel multifunctionalities, which are possible owing to the strong interaction among charge, spin, orbital, and structural degrees of freedom. Artificial interfacial modifications, which include defects, formal polarization, structural symmetry breaking, and interlayer interaction, have led to novel properties in various complex oxide heterostructures. These emergent phenomena not only serve as a platform for investigating strong electronic correlations in low-dimensional systems but also provide potentials for exploring next-generation electronic devices with high functionality. Herein, some recently developed strategies in engineering functional oxide interfaces and their emergent properties are reviewed.

19.
FEMS Microbiol Ecol ; 94(10)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30052910

RESUMO

In disease-suppressive soil, plants rely upon mutualistic associations between roots and specific microbes for nutrient acquisition and disease suppression. Notably, the transmission of suppressiveness by the cysts of sugar beet cyst nematode from suppressive to conducive soils has been previously observed in greenhouse trials. However, our current understanding of the bacterial assemblages in the cyst, root endosphere and rhizosphere soil is still limited. To obtain insights into these bacterial microbiota assemblages, the bacterial communities inhabiting the plant-associated microhabitats and cysts in soybean cyst nematode (SCN)-suppressive soil were characterized by deep sequencing, using soybean grown under growth room conditions with additional SCN challenge. Clustering analysis revealed that the cyst bacterial community was closer to the root endosphere community than to the rhizosphere and bulk soil communities. Interestingly, the cyst bacterial community was initially established by the consecutive selection of bacterial taxa from the soybean root endosphere. We found a set of potential microbial consortia, such as Pasteuria, Pseudomonas, Rhizobium, and other taxa, that were consistently enriched in the rhizocompartments under SCN challenge, and more abundant in the cysts than in the bulk soil. Our results suggest that the soybean root-associated and cyst microbiota may cause the suppressiveness of SCN in suppressive soil.


Assuntos
Microbiota , Nematoides/microbiologia , Rizosfera , Microbiologia do Solo , Soja/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Nematoides/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Raízes de Plantas/microbiologia , Raízes de Plantas/parasitologia , Solo/parasitologia , Soja/parasitologia
20.
ACS Appl Mater Interfaces ; 10(15): 12862-12869, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29617112

RESUMO

Brain-inspired computing is an emerging field, which intends to extend the capabilities of information technology beyond digital logic. The progress of the field relies on artificial synaptic devices as the building block for brainlike computing systems. Here, we report an electronic synapse based on a ferroelectric tunnel memristor, where its synaptic plasticity learning property can be controlled by nanoscale interface engineering. The effect of the interface engineering on the device performance was studied. Different memristor interfaces lead to an opposite virgin resistance state of the devices. More importantly, nanoscale interface engineering could tune the intrinsic band alignment of the ferroelectric/metal-semiconductor heterostructure over a large range of 1.28 eV, which eventually results in different memristive and spike-timing-dependent plasticity (STDP) properties of the devices. Bidirectional and unidirectional gradual resistance modulation of the devices could therefore be controlled by tuning the band alignment. This study gives useful insights on tuning device functionalities through nanoscale interface engineering. The diverse STDP forms of the memristors with different interfaces may play different specific roles in various spike neural networks.


Assuntos
Plasticidade Neuronal , Encéfalo , Semicondutores , Sinapses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA