Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
1.
J Hematol Oncol ; 14(1): 30, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596982

RESUMO

Histone methylation is a key posttranslational modification of chromatin, and its dysregulation affects a wide array of nuclear activities including the maintenance of genome integrity, transcriptional regulation, and epigenetic inheritance. Variations in the pattern of histone methylation influence both physiological and pathological events. Lysine-specific demethylase 5A (KDM5A, also known as JARID1A or RBP2) is a KDM5 Jumonji histone demethylase subfamily member that erases di- and tri-methyl groups from lysine 4 of histone H3. Emerging studies indicate that KDM5A is responsible for driving multiple human diseases, particularly cancers. In this review, we summarize the roles of KDM5A in human cancers, survey the field of KDM5A inhibitors including their anticancer activity and modes of action, and the current challenges and potential opportunities of this field.

2.
Comp Biochem Physiol B Biochem Mol Biol ; 254: 110575, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33609806

RESUMO

Hypoxia-inducible factor-1α (HIF-1α) plays a critical role in immune and inflammatory responses and is important in controlling a variety of processes in monocytes and macrophages. However, the role of HIF-1α in the teleost immune system remains less known. In this study, we cloned the cDNA sequence of HIF-1α from the ayu (Plecoglossus altivelis, PaHIF-1α). Sequence and phylogenetic tree analysis showed that PaHIF-1α clustered within the fish HIF-1α tree and was closely related to that of Northern pike (Esox lucius). PaHIF-1α was expressed in all tested tissues and expression increased in liver, head kidney, and body kidney upon Vibrio anguillarum infection. PaHIF-1α was found to regulate the expression of cytokines in ayu monocytes/macrophages (MO/MФ). PaHIF-1α mediated hypoxia-induced enhancement of MO/MФ phagocytic and bactericidal activities to enhance host defenses. Compared with the control, intermittent hypoxia further increased the expression of PaHIF-1α mRNA, improved the survival rate, and reduced the bacterial load of V. anguillarum-infected ayu. Therefore, PaHIF-1α may play a predominant role in the modulation of ayu MO/MФ function.

3.
Mol Immunol ; 133: 1-13, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33610121

RESUMO

Transcription factor PU.1 is a regulator of macrophage function, however, the specific function of PU.1 in teleost monocytes/macrophages (MO/MФ) remains unknown. We determined the cDNA sequence of two PU.1 genes from ayu (Plecoglossus altivelis; PaPU.1a and PaPU.1b). Sequence comparisons showed that PaPU.1 were most closely related to the PU.1 of rainbow smelt (Osmerus mordax). The PU.1 transcripts were mainly expressed in the spleen, and their expression was altered in various tissues upon infection with Vibrio anguillarum. PaPU.1a and PaPU.1b proteins were upregulated in MO/MФ, after infection. RNA interference was employed to knockdown PaPU.1a and PaPU.1b to investigate their function in MO/MФ. The expression of inflammatory cytokines was regulated by PaPU.1a, but not PaPU.1b, in ayu MO/MФ upon V. anguillarum infection. Both PaPU.1a and PaPU.1b knockdown lowered the phagocytic activity of MO/MФ. Furthermore, PaPU.1b knockdown attenuated MO/MФ bacterial killing capability. Our results indicate that two PaPU.1 genes differentially modulate the immune response in ayu MO/MФ against bacterial infection.

4.
Food Chem ; 347: 129030, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33515968

RESUMO

A modified quick, easy, cheap, effective, rugged, and safe (QuEChERs) method for determining triazine herbicide residues in bivalves (Mussels, Scallops, Cockles) was developed. The use of molecularly imprinted polymers (MIPs) as a selective purification material during dispersive-solid phase extraction (d-SPE) increased the removal rate of pigments interference. With 4% acidic acetonitrile as the organic modifier, the modified QuEChERs method achieved good extraction rate of herbicide residues. The satisfactory recoveries (80%-118%) and RSDs (1.0%-11.6%) of herbicide residues were obtained at three spiked levels. The limits of quantification of herbicide residues ranged from 0.10 µg/kg to 1.59 µg/kg. Further, the herbicide residues in bivalves collected in the eastern coasts of China was analyzed. The developed QuEChERs procedure coupled with GC-MS/MS was successfully applied to the herbicide residues detection in bivalves, and due to the extensive use of herbicides and the large consumption of bivalves in globally, the ongoing risk evaluation is needed.

5.
Environ Pollut ; 271: 116362, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33387782

RESUMO

Atrazine (ATR) is one of the most commonly used herbicides that could directly impair the growth and health of organisms in mariculture areas and adversely affect human health through the food chain. This study investigated the contaminant occurrence, migration, and transformation of ATR and three of its chlorinated metabolites, namely deethylatrazine (DEA), deisopropylatrazine (DIA), and didealkylatrazine (DDA), in surface seawater, sediment, and aquatic organisms from the Xiangshan Harbor. ATR was detected in all samples, while DIA and DDA were only respectively detected in aquatic and seawater samples. The distribution of ATR and its metabolites presented different patterns depending on the geographic location and showed a higher level in the aquaculture area than that in the non-aquaculture area. The bioaccumulation of ATR in aquaculture organisms showed that benthic organisms, such as Ditrema, and Sinonovacula constricta (Sin), had increased levels. The ecological risks indicated that ATR posed medium or high risks to algae in the water phase of the study area. The microcosm experiment showed that the main fate of ATR in the simulated microenvironment was sedimentation, which followed the first-order kinetic equation. The ATR in the sediment could be enriched 3-5 times in Sin, and its major metabolites were DEA and DIA.


Assuntos
Atrazina , Herbicidas , Aquicultura , Baías , Herbicidas/análise , Humanos , Água do Mar
6.
BMC Med Imaging ; 21(1): 8, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407215

RESUMO

BACKGROUND: To evaluate different stages of liver fibrosis in cynomolgus monkeys by comparing magnetic resonance-perfusion weighted imaging (MR-PWI) quantitative and semi-quantitative parameters, and confirm the best detection indicators for diagnosis of liver fibrosis. METHODS: A liver fibrosis model of different stages (S0-S4) was established in cynomolgus monkeys. The changes in MR-PWI quantitative and semi-quantitative parameters with the progression of liver fibrosis were investigated. RESULTS: MR-PWI quantitative parameters gradually decreased with the progression of liver fibrosis. Hepatic arterial perfusion index (HPI) was found to increase with the progression of liver fibrosis and significant differences of HPI between each group were observed. There was a highly positive correlation between HPI and the stages of liver fibrosis. Receiver operating characteristic (ROC) curve analysis showed that HPI had the highest efficacy of the MR-PWI quantitative parameters for the diagnosis of liver fibrosis. The MR-PW semi-quantitative parameters gradually reduced with the progression of liver fibrosis, and the differences were statistically significant between stages S3-S4 and S0-S2. Time to peak (TPP) gradually extended and showed a positive correlation with the stages of liver fibrosis. TTP had the highest efficacy of the semi-quantitative parameters for diagnosis of liver fibrosis. CONCLUSIONS: Both the MR-PWI quantitative and semi-quantitative parameters of the liver fibrosis model in cynomolgus monkeys varied at different stages of liver fibrosis, and HPI and TTP were the best detection indices for quantitative and semi-quantitative evaluation of liver fibrosis, respectively.

7.
Virus Res ; 291: 198221, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33152382

RESUMO

Phenylpropanoids, common natural compounds, possess many different biological activities such as antioxidant, anti-inflammatory and antiviral. Spring viraemia of carp virus (SVCV) can cause a high mortality in common carp (Cyprinus carpio). However, there are currently no licenced drugs that effectively cure this disease. In this study, we designed and synthesized a phenylpropanoid derivative 4-(4-methoxyphenyl)-3,4-dihydro-2H-chromeno[4,3-d]pyrimidine-2,5(1 H)-dione (E2), and explored the antiviral effect against SVCV in vitro and in vivo. Up to 25 mg/L of E2 significantly inhibited the expression levels of SVCV protein genes in the epithelioma papulosum cyprini (EPC) cell line by a maximum inhibitory rate of >90%. As expected, E2 remarkably declined the apoptotic of SVCV-infected cells and suppressed potential enhancement of the mitochondrial membrane potential (ΔΨm), these data implied that E2 could protect mitochondria from structural damage in response to SVCV. Meanwhile, E2 was added to EPC cells under four different conditions: time-of-addition, time-of-removal, pre-treatment of viruses and pre-treatment of cells indicated that E2 may block the post-entry transport process of the virus. Additionally, the up-regulation of six interferon (IFN)-related genes also demonstrated that E2 indirectly activated IFNs for the clearance of SVCV in common carp. Drug cure effect showed that treatment with E2 at 0.5 d post infection (dpi) is more effective than at 0, 1 or 2 dpi. Most importantly, intraperitoneal therapy of E2 markedly improved common carp survival rate and reduced virus copies in body. Therefore, the E2 has potential to be developed into a novel anti-SVCV agent.

8.
Dev Comp Immunol ; 117: 103978, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33338518

RESUMO

Urocortin (UCN) is a hormone in the hypothalamic-pituitary-adrenal axis that is expressed in various immune cells. However, the function of teleost UCN in the immune system remains unclear. In this study, we cloned the cDNA sequence of UCN from ayu Plecoglossus altivelis (PaUCN). Sequence and phylogenetic tree analyses showed that PaUCN clustered within the fish UCN 1 group and was most related to the rainbow trout (Oncorhynchus mykiss) UCN. PaUCN was expressed in all tested tissues and its expression increased in the liver, spleen, head kidney, and gill upon Vibrio anguillarum infection. Mature PaUCN protein (mPaUCN) treatment affected the phagocytosis and bacterial killing of monocytes/macrophages (MO/MФ). mPaUCN reduced pro-inflammatory cytokine expression in MO/MФ, which was partially mediated via interaction with ayu interleukin-6. mPaUCN reduced bacterial load and increased the survival of V. anguillarum-infected ayu. Overall, UCN as an endocrine factor regulates the immune response of ayu after infection by activating MO/MФ, thus contributing to enhance fish survival.

9.
Dev Comp Immunol ; : 103960, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33301793

RESUMO

The versatile fish pathogen Edwardsiella tarda is an intracellular pathogen with the ability to invade and replicate in host phagocytes. However, the mechanism mediating the uptake of E. tarda in fish monocytes/macrophages (MO/MΦ) is not yet understood. Generating mudskipper kidney-derived MO/MФ transcriptomic resources from mudskipper challenged by E. tarda is crucial for understanding the molecular mechanisms underlying the mudskipper invasion process. In the present study, a total of 1,185 up-regulated and 885 down-regulated differentially expressed genes (DEGs) were identified using RNA-seq. Enrichment and pathway analysis of DEGs revealed the centrality of the phagosome and regulation of actin cytoskeleton pathways in pathogen entry. The progress of phagosome formation was observed by transmission electron microscopy. Eight conserved integrin (ITG) subunit genes, belonging to the phagocytic receptors, were found in the transcriptomic sequence data. Additionally, quantitative real-time PCR showed that the mRNA expressions of most ITG subunit genes were related to the different infection times of E. tarda and the different bacterial pathogens. Further assays demonstrated that phagocytosis of FITC-labeled E. tarda by mudskipper MO/MФ was significantly reduced by the tetrapeptide Asp-Gly-Arg-Ser (RGDS). In summary, phagocytosis is one of the entry pathways into mudskipper MO/MΦ, and RGD-binding ITGs are involved in the phagosome formation process.

10.
J Fish Dis ; 2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33340375

RESUMO

Rapid and user-friendly diagnostic tests are necessary for early diagnosis and immediate detection of diseases, particularly for on-site screening of pathogenic microorganisms in aquaculture. In this study, we developed a dual-sample microfluidic chip integrated with a real-time fluorogenic loop-mediated isothermal amplification assay (dual-sample on-chip LAMP) to simultaneously detect 10 pathogenic microorganisms, that is Aeromonas hydrophila, Edwardsiella tarda, Vibrio harveyi, V. alginolyticus, V. anguillarum, V. parahaemolyticus, V. vulnificus, infectious hypodermal and haematopoietic necrosis virus, infectious spleen and kidney necrosis virus, and white spot syndrome virus. This on-chip LAMP provided a nearly automated protocol that can analyse two samples simultaneously, and the tests achieved limits of detection (LOD) ranging from 100 to 10-1  pg/µl for genomic DNA of tested bacteria and 10-4 to 10-5  pg/µl for recombinant plasmid DNA of tested viruses, with run times averaging less than 30 min. The coefficient of variation for the time-to-positive value was less than 10%, reflecting a robust reproducibility. The clinical sensitivity and specificity were 93.52% and 85.53%, respectively, compared to conventional microbiological or clinical methods. The on-chip LAMP assay provides an effective dual-sample and multiple pathogen analysis, and thus would be applicable to on-site detection and routine monitoring of multiple pathogens in aquaculture.

11.
Appl Microbiol Biotechnol ; 104(24): 10655-10667, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33151366

RESUMO

Pseudomonas aeruginosa is a major opportunistic human pathogen that causes nosocomial infections, and the proportion of carbapenem resistance has recently dramatically increased in P. aeruginosa due to the overuse of them. In this study, strains G10 and G20, with minimum inhibitory concentration (MIC) of imipenem of 16 µg/ml and more than 32 µg/ml, were isolated during continuous subculture of cells exposed to stepwise increasing concentrations of imipenem, respectively. The genomes of G10 and G20 were sequenced and compared with parental strain (P. aeruginosa ATCC 27853, G0). There were 59, 59, and 58 genes involved in antibiotic resistance which were predicted in G0, G10, and G20, respectively, while 374, 366, and 363 genes involved in virulence factors were identified among these three strains. Due to the significantly different MICs of imipenem and highly similar profiles of antibiotic resistance and virulence factors related genes among three strains, the specific genetic variations that occurred were identified and compared, including single nucleotide polymorphisms (SNPs), insertions and deletions (InDels), and structural variations (SVs). The increase in the MIC of imipenem was proposed to be linked to mutations involved in polyamine biosynthesis, biofilm formation, OprD, and efflux pump functions. This study aims to clarify the underlying mechanism of imipenem resistance and provide alternative strategies for reducing resistance in P. aeruginosa. KEY POINTS: • Strains with different imipenem MIC were obtained via laboratory selection evolution. • Whole genomes of two strains with different MIC of imipenem were sequenced. • Underlying mechanism of imipenem resistance was clarified via comparative genomics.

12.
Dev Comp Immunol ; : 103930, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212093

RESUMO

Virus-encoded tumor necrosis factor receptors (vTNFRs) facilitate viral escape from the host immune response during viral propagation. Cyprinid Herpesvirus-2 (CyHV-2) is a double-stranded DNA virus of alloherpesviridae family that causes great economic losses in the aquaculture industry. The present study identified and characterized a novel TNFR homolog termed ORF4 in CyHV-2. ORF4 was identified as a secreted protein and a homolog of herpesvirus entry mediator (HVEM). ORF4 localized to the cytoplasm in infected GiCF cells. ORF4 overexpression enhanced viral propagation, while downregulation of ORF4 via siRNA decreased viral propagation. ORF4 overexpression promoted GiCF proliferation, and its downregulation suppressed CyHV-2-induced apoptosis. GST-pulldown and LC-MS/MS assays identified 44 conditional binding proteins that interact with ORF4 protein, while the GST pulldown test did not support the idea that ORF4 interact with histone H3.3. Taken together, our results contribute to our understanding of the vTNFR function in alloherpesviridae pathogenesis and host immune regulation.

13.
Lab Chip ; 20(23): 4420-4432, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33103699

RESUMO

Clear cell renal cell carcinoma (ccRCC) is a common genitourinary cancer associated with the development of abnormal tumor angiogenesis. Although multiple anti-angiogenic therapies have been developed, responses to individual treatment are highly variable between patients. Thus, the use of one-patient clinical trials has been suggested as an alternative to standard trials. We used a microfluidic device to generate organotypic primary patient-specific blood vessel models using normal (NEnC) and tumor-associated primary CD31+ selected cells (TEnC). Our model was able to recapitulate differences in angiogenic sprouting and vessel permeability that characterize normal and tumor-associated vessels. We analyzed the expression profile of vessel models to define vascular normalization in a patient-specific manner. Using this data, we identified actionable targets to normalize TEnC vessel function to a more NEnC-like phenotype. Finally, we tested two of these drugs in our patient-specific models to determine the efficiency in restoring vessel function showing the potential of the model for single-patient clinical trials.

14.
Zool Res ; 41(6): 644-655, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33124217

RESUMO

Liver-expressed antimicrobial peptide 2 (LEAP-2) is a cationic peptide that plays an important role in a host's innate immune system. We previously demonstrated that mudskipper ( Boleophthalmus pectinirostris) LEAP-2 (BpLEAP-2) induces chemotaxis and activation of monocytes/ macrophages (MO/MФ). However, the molecular mechanism by which BpLEAP-2 regulates MO/MΦ remains unclear. In this study, we used yeast two-hybrid cDNA library screening to identify mudskipper protein(s) that interacted with BpLEAP-2, and characterized a sequence encoding motile sperm domain-containing protein 2 (BpMOSPD2). The interaction between BpLEAP-2 and BpMOSPD2 was subsequently confirmed by co-immunoprecipitation (Co-IP). Sequence analyses revealed that the predicted BpMOSPD2 contained an N-terminal extracellular portion composed of a CRAL-TRIO domain and a motile sperm domain, a C-terminal transmembrane domain, and a short cytoplasmic tail. Phylogenetic tree analysis indicated that BpMOSPD2 grouped tightly with fish MOSPD2 homologs and was most closely related to that of the Nile tilapia ( Oreochromis niloticus). The recombinant BpMOSPD2 was produced by prokaryotic expression and the corresponding antibody was prepared for protein concentration determination. RNA interference was used to knockdown BpMOSPD2 expression in the mudskipper MO/MФ, and the knockdown efficiency was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Knockdown of BpMOSPD2 significantly inhibited BpLEAP-2-induced chemotaxis of mudskipper MO/MФ and BpLEAP-2-induced bacterial killing activity. Furthermore, knockdown of BpMOSPD2 inhibited the effect of BpLEAP-2 on mRNA expression levels of BpIL-10, BpTNFα, BpIL-1ß, and BpTGFß in MO/MФ. In general, BpMOSPD2 directly interacted with BpLEAP-2, and mediated the effects of BpLEAP-2 on chemotaxis and activation of mudskipper MO/MФ. This is the first identification of MOSPD2 as a receptor for LEAP-2.

15.
Stat Methods Med Res ; : 962280220951907, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32867604

RESUMO

RNA sequencing data have been abundantly generated in biomedical research for biomarker discovery and other studies. Such data at the exon level are usually heavily tailed and correlated. Conventional statistical tests based on the mean or median difference for differential expression likely suffer from low power when the between-group difference occurs mostly in the upper or lower tail of the distribution of gene expression. We propose a tail-based test to make comparisons between groups in terms of a specific distribution area rather than a single location. The proposed test, which is derived from quantile regression, adjusts for covariates and accounts for within-sample dependence among the exons through a specified correlation structure. Through Monte Carlo simulation studies, we show that the proposed test is generally more powerful and robust in detecting differential expression than commonly used tests based on the mean or a single quantile. An application to TCGA lung adenocarcinoma data demonstrates the promise of the proposed method in terms of biomarker discovery.

16.
iScience ; 23(7): 101335, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32682323

RESUMO

During development, cells undergo multiple, distinct morphogenetic processes to form a tissue or organ, but how their temporal order and time interval are determined remain poorly understood. Here we show that the nuclear receptors E75 and DHR3 regulate the temporal order and time interval between the collective migration and lumen formation of a coherent group of cells named border cells during Drosophila oogenesis. We show that E75, in response to ecdysone signaling, antagonizes the activity of DHR3 during border cell migration, and DHR3 is necessary and sufficient for the subsequent lumen formation that is critical for micropyle morphogenesis. DHR3's lumen-inducing function is mainly mediated through ßFtz-f1, another nuclear receptor and transcription factor. Furthermore, both DHR3 and ßFtz-f1 are required for chitin secretion into the lumen, whereas DHR3 is sufficient for chitin secretion. Lastly, DHR3 and ßFtz-f1 suppress JNK signaling in the border cells to downregulate cell adhesion during lumen formation.

17.
Microb Ecol ; 80(4): 935-945, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32494840

RESUMO

Understanding the rules that govern the successions of gut microbiota is prerequisite for testing general ecological theories and sustaining a desirable microbiota. However, the ignorance of microeukaryotes raises the question of whether gut microeukaryotes are assembled according to the same rules as bacteria. We tracked the shrimp gut bacterial and microeukaryotic communities by a longitudinal dense sampling. The successions of both domains were significantly correlated with host age, with relatively stable microeukaryotic communities in adult shrimp. Gut microeukaryotes exhibited significantly higher turnover rate, but fewer transient species, lower proportion of temporal generalists, and narrower habitat niche breadth than bacteria. The γ-diversity partitioning analysis revealed that the successions of gut microbiotas were primarily ascribed to the high dissimilarity as shrimp aged ([Formula: see text]IntraTimes), whereas the relative importance of [Formula: see text]IntraTimes was significantly higher for microeukaryotes than that for bacteria. Compared with contrasting ecological processes in governing free-living bacteria and microeukaryotes, the ecological patterns were comparable between host-associated gut counterparts. However, the gut microeukaryotes were governed more strongly by deterministic selection relative to nestedness compared with the gut bacteria, which supports the "size-plasticity" hypothesis. Our results highlight the importance of independently interpreting free-living and host-associated meta-communities for a comprehensive understanding of the processes that govern microbial successions.

18.
iScience ; 23(6): 101204, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32535019

RESUMO

During collective cell migration, front cells tend to extend a predominant leading protrusion, which is rarely present in cells at the side or rear positions. Using Drosophila border cells (BCs) as a model system of collective migration, we revealed the presence of a supracellular actomyosin network at the peripheral surface of BC clusters. We demonstrated that the Myosin II-mediated mechanical tension as exerted by this peripheral supracellular network not only mediated cell-cell communication between leading BC and non-leading BCs but also restrained formation of prominent protrusions at non-leading BCs. Further analysis revealed that a cytoplasmic dendritic actin network that depends on the function of Arp2/3 complex interacted with the actomyosin network. Together, our data suggest that the outward pushing or protrusive force as generated from Arp2/3-dependent actin polymerization and the inward restraining force as produced from the supracellular actomyosin network together determine the collective and polarized morphology of migratory BCs.

19.
Fish Shellfish Immunol ; 102: 267-275, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32360277

RESUMO

CD46 is an important immune regulatory receptor with multiple functions. However, studies on the function of teleost CD46, especially the different CD46 isoforms are limited. In this study, we identified three membrane cofactor protein (MCP, CD46) gene isoforms from ayu (Plecoglossus altivelis) and tentatively named as PaCD46 isoforms. PaCD46 isoforms were generated by alternative splicing and all consisted of four conserved short consensus repeats (SCRs), and the variable serine-threonine-proline-rich domain, transmembrane hydrophobic domain, and cytoplasmic tail. Phylogenetic analysis showed that the isoforms clustered together with other fish CD46 and then with higher animal CD46. Western blotting analysis of peripheral blood mononuclear cells (PBMC) revealed three bands, all of which had much larger molecular weights than the theoretical values of the three PaCD46 isoforms. Moreover, three PaCD46 isoforms were individually expressed on HEK293 cells, and Western blotting showed the similar band profile to that of PBMC. The recombinant extracellular domain of the PaCD46 isoforms, obtained by expression in Pichia pastoris, significantly reduced hemolysis activity of ayu sera. Furthermore, each of the three PaCD46 isoforms respectively protected the HEK293 cells expressing the isoform. The isoforms were also identified for their protection of autologous PBMC from complement activation. These results provided the first evidence that PaCD46 isoforms may be complement regulatory proteins to prevent complement-induced damage to self-tissue.

20.
Cell Death Differ ; 27(11): 3082-3096, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32467643

RESUMO

Hedgehog (Hh) pathway plays multiple roles in many physiological processes and its dysregulation leads to congenital disorders and cancers. Hh regulates the cellular localization of Smoothened (Smo) and the stability of Cubitus interruptus (Ci) to fine-tune the signal outputs. However, the underlying mechanisms are still unclear. Here, we show that the scaffold protein Rack1 plays dual roles in Hh signaling. In the absence of Hh, Rack1 promotes Ci and Cos2 to form a Ci-Rack1-Cos2 complex, culminating in Slimb-mediated Ci proteolysis. In the presence of Hh, Rack1 dissociates from Ci-Rack1-Cos2 complex and forms a trimeric complex with Smo and Usp8, leading to Smo deubiquitination and cell surface accumulation. Furthermore, we find the regulation of Rack1 on Hh pathway is conserved from Drosophila to mammalian cells. Our findings demonstrate that Rack1 plays dual roles during Hh signal transduction and provide Rack1 as a potential drug target for Hh-related diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA