Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.946
Filtrar
1.
Food Chem ; 339: 127875, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866701

RESUMO

Gluten protein based snacks have been a major concern for allergen, low nutrition and physio-chemical properties. In this study, wheat flour (WF) was replaced with cassava starch (CS) at different levels [10, 20, 30, 40 and 50%(w/w)] to prepare fried snacks. The addition of CS significantly (P < 0.05) increased hardness and pasting properties while gluten network, oil uptake, water holding capacity, and expansion were decreased. Fourier transform infrared spectroscopy revealed that the secondary structure of amide I, α-helix (1650-1660 cm-1), along with amide II region (1540 cm-1) changed when CS was added. Starch-protein complex was identified by X-ray diffraction analysis while no starch-protein-lipid complex was observed. The micrographs from scanning electron microscopy showed that starch-protein matrix was interrupted when ≥40%(w/w) CS was added. Furthermore, in vitro calcium bioavailability was decreased slightly with the addition of CS. The results suggest the feasibility of adding 40% CS as an alternative to WF in snacks.

2.
Food Chem ; 339: 127902, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32920304

RESUMO

A protoberberine alkaloid, (-)-tetrahydroberberrubine∙acetate (THBA) was assessed for its antioxidant potential and ability to inhibit the growth of a food hazard bacterium Bacillus cereus in vitro and in situ. THBA displayed significant and dose-dependent cellular antioxidant potential against hydrogen peroxide-induced oxidative stress in NIH 3T3 fibroblast cells and decreased the ROS levels as well as increased the expression levels of SOD1 and SOD2 enzymes. The inhibitory spectrum of THBA confirmed its mechanistic role in the disruption of the membrane integrity of B. cereus as evidenced by the results of time-inactivation, cell membrane integrity, NPN membrane uptake, membrane potential, and electron microscopy analyses. Moreover, THBA inhibited biofilm formation by B. cereus and disrupted pre-established biofilms on a glass surface. Furthermore, THBA was also able to inhibit B. cereus in raw rice with a significant amount of reduction in CFU counts, suggesting its potential role as a natural antioxidant and antimicrobial agent.

3.
Biochim Biophys Acta Bioenerg ; 1862(1): 148336, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33181099

RESUMO

High light (HL) exposure leads to photoinhibition and excess accumulation of toxic reactive oxygen species (ROS) in photosynthetic organisms, negatively impacting the global primary production. In this study, by screening a mutant library, a gene related with bicarbonate transport, slr1512, was found involved in HL acclimation in model cyanobacterium Synechocystis sp. PCC 6803. Comparative growth analysis showed that the slr1512 knockout mutant dramatically enhanced the tolerance of Synechocystis towards long-term HL stress (200 µmol photons m-2 s-1) than the wild type, achieving an enhanced growth by ~1.95-folds after 10 d. The phenotype differences between Δslr1512 and the wild type were analyzed via absorption spectrum and chlorophyll a content measurement. In addition, the accessible bicarbonate controlled by slr1512 and decreased PSII activity were demonstrated, and they were found to be the key factors affecting the tolerance of Synechocystis against HL stress. Further analysis confirmed that intracellular bicarbonate can significantly affect the activity of photosystem II, leading to the altered accumulation of toxic ROS under HL. Finally, a comparative transcriptomics was applied to determine the differential responses to HL between Δslr1512 and the wild type. This work provides useful insights to long-term acclimation mechanisms towards HL and valuable information to guide the future tolerance engineering of cyanobacteria against HL.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33257248

RESUMO

This work demonstrated the effect of charge transfer (CT) induced by metal surface plasmon resonance (SPR) on surface-enhanced Raman scattering (SERS). We designed an Ag-ZnSe nanostructure and introduced p-aminothiophenol (PATP) molecules to form an Ag-ZnSe-PATP system. The proposed method compensates for the CT difficulty in wide-band-gap semiconductors, which was initiated by the SPR of Ag. The Raman intensity is enhanced differently depending on the action of excitation light of different wavelengths. The concept of the CT degree was introduced to analyze this intriguing phenomenon. The system constructed in this work combines the electromagnetic enhancement mechanism and the chemical enhancement mechanism, which helps further understand the SERS mechanism and provides important references for SERS research on wide-band-gap semiconductors.

5.
Comput Biol Med ; 128: 104106, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33221640

RESUMO

Endoscopic images are used to observe the internal structure of the human body. Specular reflection (SR) images are mostly a consequence of the strong light and bright regions appearing on endoscopic images, which affects the performance of minimally invasive surgery. In this study, we propose a novel method for automatic SR detection based on intrinsic image layer separation (IILS). The proposed method consists of three steps. Initially, it involves the normalization of the image followed by the extraction of high gradient area, and the separation of SR is done on the basis of the color model. The image melding technique is utilized to reconstruct the reflected pixels. The experiments were conducted on 912 endoscopic images from CVC-EndoSceneStill. The results of accuracy, sensitivity, specificity, precision, Jaccard index, Dice coefficient, standard deviation, and pixel count difference show that the detection performance of the proposed method outperforms that of other state-of-the-art methods. The evaluation of the proposed IILS-based SR detection demonstrates that our method obtains better qualitative and quantitative assessments compared with other methods, which can be used as a promising preprocessing step for further analysis of endoscopic images.

6.
PLoS One ; 15(11): e0241561, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33253255

RESUMO

Photoperiod is an important factor of mammalian seasonal rhythm. Here, we studied morphological differences in the Harderian gland (HG), a vital photosensitive organ, in male striped dwarf hamsters (Cricetulus barabensis) under different photoperiods (short photoperiod, SP; moderate photoperiod, MP; long photoperiod, LP), and investigated the underlying molecular mechanisms related to these morphological differences. Results showed that carcass weight and HG weight were lower under SP and LP conditions. There was an inverse correlation between blood melatonin levels and photoperiod in the order SP > MP > LP. Protein expression of hydroxyindole-O-methyltransferase (HIOMT), a MT synthesis-related enzyme, was highest in the SP group. Protein expression of bax/bcl2 showed no significant differences, indicating that the level of apoptosis remained stable. Protein expression of LC3II/LC3I was higher in the SP group than that in the MP group. Furthermore, comparison of changes in the HG ultrastructure demonstrated autolysosome formation in the LP, suggesting the lowest autophagy level in under MP. Furthermore, the protein expression levels of ATP synthase and mitochondrial fission factor were highest in the MP group, whereas citrate synthase, dynamin-related protein1, and fission1 remained unchanged in the three groups. The change trends of ATP synthase and citrate synthase activity were similar to that of protein expression among the three groups. In summary, the up-regulation of autophagy under SP and LP may be a primary factor leading to loss of HG weight and reduced mitochondrial energy supply capacity.

7.
Artigo em Inglês | MEDLINE | ID: mdl-33150718

RESUMO

One-dimensional (1D) hyperbranched heterostructures (HBHSs) with abundant interfaces are rendered with various interfacial phenomena and functionalities. However, the rational synthesis of 1D HBHSs with desired spatial architecture and specific interface remains a great challenge. Here, we report a seeded growth method for controlled synthesis of two extraordinary types of HBHSs, in which high-intensity of CdS branches selectively grow on 1D nanowire (NW) trunks with different growth behaviors. The composition of the HBHSs can be further tuned by combining with cation exchange method, which enriches the variety of the HBHSs. The optoelectronic devices based on a single HBHS were fabricated and exhibit a better photoresponse performance compared with that of a single NW trunk. This advance provides a strategy for the controlled synthesis HBHSs with complex morphology and offers a platform for exploring their applications for photo harvesting and conversion.

8.
Clin Lab ; 66(11)2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33180437

RESUMO

BACKGROUND: This study aimed to develop a method for assessing the sensitivity and diagnostic performance of the neutrophil surface CD64 stimulation index (SI) in tuberculosis infection. METHODS: A total of 149 samples were divided into three groups (tuberculosis group, n = 51; nontuberculosis infection group, n = 50; and healthy control group, n = 48). Flow cytometry was used to detect the sensitivity of CD64 SI on the surface of neutrophils. The sensitivities of CD64 SI before and after stimulation with ESAT-6 and CFP-10 antigens were compared using interferon-gamma release assay-enzyme-linked immunosorbent assay (IGRA-ELISA). RESULTS: The diagnostic threshold for CD64 SI based on the receiver operating characteristic curve was found to be 2.025, which is the standard for judging tuberculosis infection. The IGRA-ELISA and the CD64 SI assays were highly consistent with a kappa value of 0.635 (p < 0.003, 95% CI: 0.002 - 0.003). CONCLUSIONS: The neutrophil surface CD64 SI value detection method may serve as one of the new diagnostic methods for active Mycobacterium tuberculosis infection.

9.
Cell Reprogram ; 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33181023

RESUMO

Essential amino acids (EAA) of inappropriate concentration have been reported to compromise the development of embryo. This study aimed to investigate the effect of EAA on the developmental competence of porcine embryos produced by either handmade cloning (HMC) or parthenogenetic activation (PA). In experiment 1, we examined the in vitro developmental competence of PA embryos after culture in PZM-3 containing different concentrations (v/v) of EAA (0%, 1%, and 2%). The results indicated that reducing the concentration of EAA from 2% to 1% significantly improved the blastocyst formation (36% vs. 54%), while 0% would compromise the blastocyst formation rate (54% vs. 38%). In experiment 2, we further investigated the effect of EAA concentration (1% and 2%) on the in vitro developmental competence and gene expression of HMC embryos. Blastocyst rate significantly increased by reducing concentration of EAA (41% vs. 53%) and those genes upregulated were enriched in oxidative phosphorylation, PPAR signaling pathway, and metabolism-related pathways. In experiment 3, the in vivo developmental competence of HMC embryos cultured in the medium supplemented with 1% EAA was examined. Embryos derived from both non-gene-modified fetal fibroblasts (FFs) and gene-modified fetal fibroblasts (GMFFs) were transferred to recipients. The pregnancy rates were 83% and 78% separately. Out of the pregnancies, 5 (FFs) and 6 (GMFFs) were successfully developed to term. Our study indicates that supplementing EAA to embryo culture medium at a concentration of 1% can improve the in vitro developmental competence of porcine HMC embryos and the blastocyst obtained can successfully develop to term, which could be beneficial for the production of gene-modified piglets.

10.
J Genet Genomics ; 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-33184002

RESUMO

One of the main causes of pregnancy failure and fetus abortion is oocyte aneuploidy. Oocyte aneuploidy has a dramatic high prevalence in older women. Decades of research has uncovered many possible causes of aneuploidy in aged oocytes, such as unsatisfactory crossover formation, cohesin loss, spindle assembly defects, spindle assembly checkpoint malfunction, microtubule-kinetochore attachment failure, kinetochore misorientation, mitochondria dysfunction-induced increases in reactive oxygen species, protein acetylation, DNA damage, and others. However, questions still need to be answered if these aneuploidization factors have inherent relations and how to prevent oocyte aneuploidization in aged oocytes. Epidemiologically, oocyte aneuploidy has been found to be weakly associated with higher homocysteine concentration, obesity, ionizing radiation, and even seasonality. What can these statistical epidemiology data tell us? In this review, we summarize the research progress and epidemiologic data about oocyte aneuploidy and present an integrated view of oocyte aneuploidization.

11.
Org Lett ; 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33205980

RESUMO

A 1,3-sulfonyl migration of difluorovinyl sulfonates initiated by a catalytic amount of silver fluoride is presented. α,α-Difluoro-ß-ketosulfones were successfully prepared in excellent yields. This method features high chemoselectivity, good functional group tolerance, high atom economy, and mild, environmentally benign reaction conditions. Furthermore, mechanistic experiments indicate that this migration proceeds in an intermolecular pathway and the corresponding sulfinates are possible intermediates.

12.
Nanoscale ; 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33206091

RESUMO

The localized surface plasmon resonance (LSPR) of Ag/indium tin oxide (ITO)@polystyrene (PS) in the visible-NIR region was dependent on the tuning of the carrier density caused by adjusting the thickness of the ITO layer. The two-dimensional correlation spectroscopy (2D-COS) results of the dependence of each component in the UV-vis-NIR spectrum on the carrier density response enabled the successful exploration of the carrier transport process.

13.
PLoS One ; 15(11): e0241241, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33186371

RESUMO

Nuclear factor erythroid 2-related factor 2 (NRF2) functions as a transcription factor and regulates a wide array of antioxidant and stress-responsive genes. NRF2 has been widely implicated in different types of cancers, but only limited studies concerning the relationship between NRF2 expression and tumour invasion or prognosis in lung cancer. Therefore, we conducted a meta-analysis to determine the prognostic value of NRF2 in patients with non-small cell lung cancer (NSCLC). The relationship between NRF2 expression in NSCLC patients and clinicopathological features was also investigated. Overall survival (OS) and treatment response rate were evaluated using STATA software. Twenty eligible articles with 2530 lung cancer patients were included in this meta-analysis. The results revealed that high expression level of NRF2 was associated with pathologic distant metastasis (odds ratio (OR) = 2.64, 95% confidence interval (CI) 1.62-4.31; P < 0.001), lymph node metastasis (OR = 2.14, 95% CI: 1.53-3.00; P < 0.001), and tumour node metastasis (TNM) stage (OR = 1.95, 95% CI: 1.52-2.49, P < 0.001). High NRF2 expression was associated with low treatment response rate in platinum-based chemotherapy (HR = 0.11, 95% CI 0.02-0.51; P = 0.005). High expression level of NRF2 is predictive for poor overall survival rate (HR = 1.86, 95% CI 1.44-2.41, P < 0.001) and poor progression-free survival (PFS) (HR = 2.27, 95% CI 1.26-4.09, P = 0.006). Compared to patients with a low level of NRF2 expression, patients with high NRF2 expression levels were associated with worse OS and PFS when given the chemotherapy or EGFR-TKI. Together, our meta-analysis results suggest that NRF2 can act as a potential indicator of NSCLC tumour aggressiveness and help the prognosis and design of a better treatment strategy for NSCLC patients.

14.
Rev Bras Anestesiol ; 2020 Oct 22.
Artigo em Português | MEDLINE | ID: mdl-33223005

RESUMO

BACKGROUND AND OBJECTIVES: Preoperative use of flurbiprofen axetil (FA) is extensively adopted to modulate the effects of analgesia. However, the relationship between FA and sedation agents remains unclear. In this study, we aimed to investigate the effects of different doses of FA on the median Effective Concentration (EC50) of propofol. METHODS: Ninety-six patients (ASA I or II, aged 18-65 years) were randomly assigned into one of four groups in a 1:1:1:1 ratio. Group A (control group) received 10 mL of Intralipid, and groups B, C and D received 0.5 mg.kg-1, 0.75 mg.kg-1 and 1 mg.kg-1 of FA, respectively, 10 minutes before induction. The depth of anesthesia was measured by the Bispectral Index (BIS). The "up-and-down" method was used to calculate the EC50 of propofol. During the equilibration period, if BIS ≤ 50 (or BIS > 50), the next patient would receive a 0.5 µg.mL-1-lower (or-higher) propofol Target-Controlled Infusion (TCI) concentration. The hemodynamic data were recorded at baseline, 10 minutes after FA administration, after induction, after intubation, and 15 minutes after intubation. RESULTS: The EC50 of propofol was lower in Group C (2.32 µg.mL-1, 95% Confidence Interval [95% CI] 1.85-2.75) and D (2.39 µg.mL-1, 95% CI 1.91-2.67) than in Group A (2.96 µg.mL-1, 95% CI 2.55-3.33) (p = 0.023, p = 0.048, respectively). There were no significant differences in the EC50 between Group B (2.53 µg.mL-1, 95% CI 2.33-2.71) and Group A (p ˃ 0.05). There were no significant differences in Heart Rate (HR) among groups A, B and C. The HR was significantly lower in Group D than in Group A after intubation (66 ± 6 vs. 80 ± 10 bpm, p < 0.01) and 15 minutes after intubation (61 ± 4 vs. 70 ± 8 bpm, p < 0.01). There were no significant differences among the four groups in Mean Arterial Pressure (MAP) at any time point. The MAP of the four groups was significantly lower after induction, after intubation, and 15 minutes after intubation than at baseline (p < 0.05). CONCLUSION: High-dose FA (0.75 mg.kg-1 or 1 mg.kg-1) reduces the EC50 of propofol, and 1 mg.kg-1 FA reduces the HR for adequate anesthesia in unstimulated patients. Although this result should be investigated in cases of surgical stimulation, we suggest that FA pre-administration may reduce the propofol requirement when the depth of anesthesia is measured by BIS.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 247: 119126, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33160136

RESUMO

In this work, the monodisperse polystyrene colloidal particles/Ag/zeolite imidazole framework (PS/Ag/ZIF-8) substrate was successfully prepared and served as SERS active substrate. The composition, structure and morphology of the PS/Ag/ZIF-8 substrates were studied by XRD, SEM, UV-Vis and XPS measurements. The main finding of this study was that the as-prepared PS/Ag/ZIF-8 substrate could exhibit outstanding SERS property when 4-mercaptobenzoic acid (4-MBA) was used as the SERS probes. The SERS mechanism was attributed to the combined effect of the electromagnetic enhancement and chemical enhancement (CT). In addition, the SERS behavior of the sandwich PS/Ag/ZIF-8 substrate exhibit a laser wavelength-dependence CT effect with changing the laser source (473 nm, 514 nm, 633 nm and 785 nm). The wavelength-dependence CT mechanism were discussed briefly in the article. The results showed that the chemical interaction in the structure is a necessary condition for occurrence of the CT. The CT process can be evaluated quantitatively by the charge transfer degree (ρCT). Moreover, the enhancement factor (EF) of 1.23 × 106 was obtained with 4-MBA probes adsorbed on the synthesized PS/Ag/ZIF-8 substrate. More importantly, our research may open the door for developing the SERS substrate research with the well-studied metal-organic frameworks nanostructures materials.

16.
J Enzyme Inhib Med Chem ; 35(1): 1937-1943, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33167737

RESUMO

Glycoside hydrolase family 18 (GH18) chitinases play an important role in various organisms ranging from bacteria to mammals. Chitinase inhibitors have potential applications as pesticides, fungicides, and anti-asthmatics. Berberine, a plant-derived isoquinoline alkaloid, was previously reported to inhibit against various GH18 chitinases with only moderate K i values ranging between 20 and 70 µM. In this report, we present for the first time the berberine-complexed crystal structure of SmChiB, a model GH18 chitinase from the bacterium Serratia marcescens. Based on the berberine-binding mode, a hydrophobic cavity-based optimisation strategy was developed to increase their inhibitory activity. A series of berberine derivatives were designed and synthesised, and their inhibitory activities against GH18 chitinases were evaluated. The compound 4c showed 80-fold-elevated inhibitory activity against SmChiB and the human chitinase hAMCase with K i values at the sub-micromolar level. The mechanism of improved inhibitory activities was proposed. This work provides a new strategy for developing novel chitinase inhibitors.

17.
Sheng Wu Gong Cheng Xue Bao ; 36(10): 2126-2138, 2020 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-33169577

RESUMO

Development of "liquid sunshine" could be a key technology to deal with the issue of fossil fuel depletion. ß-caryophyllene is a terpene compound with high energy density and has attracted attention for its potential application as a jet fuel. The high temperature and high light-tolerant photosynthetic cyanobacterium Synechococcus elongatus UTEX 2973 (hereafter Synechococcus 2973), whose doubling time is as short as 1.5 h, has great potential for synthesizing ß-caryophyllene using sunlight and CO2. In this study, a production of ~121.22 µg/L ß-caryophyllene was achieved at 96 h via a combined strategy of pathway construction, key enzyme optimization and precursor supply enhancement. In addition, a final production of ~212.37 µg/L at 96 h was realized in a high-density cultivation. To our knowledge, this is the highest production reported for ß-caryophyllene using cyanobacterial chassis and our study provide important basis for high-density fuel synthesis in cyanobacteria.


Assuntos
Biocombustíveis , Dióxido de Carbono , Synechococcus , Biocombustíveis/microbiologia , Dióxido de Carbono/metabolismo , Luz , Fotossíntese , Synechococcus/genética , Synechococcus/metabolismo , Synechococcus/efeitos da radiação
18.
Sheng Wu Gong Cheng Xue Bao ; 36(10): 2151-2161, 2020 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-33169579

RESUMO

Kidney is one of the most important organs of the body and the mammalian kidney development is essential for kidney unit formation. The key process of kidney development is metanephric development, where mesenchymal-epithelial transition (MET) plays a crucial role. Here we investigated the biological function of PPP3CA in metanephric mesenchyme (MM) cells. qRT-PCR and Western blotting were used to detect PPP3CA and MET makers expression in mK3, mK4 cells respectively at mRNA and protein level. Subsequently, PPP3CA was stably knocked down via lentivirus infection in mK4 cells. Flow cytometry, EdU/CCK-8 assay, wound healing assay were conducted to clarify the regulation of PPP3CA on cell apoptosis, proliferation and migration respectively. PPP3CA was expressed higher in epithelial-like mK4 cells than mesenchyme-like mK3 cells. Thus, PPP3CA was silenced in mK4 cells and PPP3CA deficiency promoted E-cadherin expression, cell apoptosis. Moreover, PPP3CA knock down attenuated cell proliferation and cell migration in mK4 cell. The underlying mechanism was associated with the dephosphorylation of PPP3CA on ERK1/2. Taken together, our results indicated that PPP3CA mediated MET process and cell behaviors of MM cells, providing new foundation for analyzing potential regulator in kidney development process.


Assuntos
Apoptose , Transição Epitelial-Mesenquimal , Inativação Gênica , Células-Tronco Mesenquimais , Animais , Apoptose/genética , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Células-Tronco Mesenquimais/citologia , Mesoderma , Camundongos
19.
Langmuir ; 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33231080

RESUMO

Although increasing superwetting membranes have been developed for separating oil-water emulsions based on the "size-sieving" mechanism, their pores are easily blocked and fouled by the intercepted emulsified droplets, which would result in a severe membrane fouling issue and a sharp decline in flux. Instead of droplet interception, a fiber-based coalescer separates oil/water emulsions by inducing the emulsified droplets to coalesce and transform into layered oil/water mixtures, exhibiting an ability to work continuously for a long time with high throughput, which makes it a promising technology for emulsion treatment. However, the underlying mechanism of the separation process is not well understood, which makes it difficult to further improve the separation performance. Hence, in this work, the dynamic behaviors of water-in-oil emulsified droplets on the surface of the coalescing fiber were numerically investigated based on the phase-field model. The attachment, transport, and detachment behaviors of droplets on fibers were directly observed, and the effects of fiber wettability, orientation, arrangement, and fluid speed were studied in detail. First, it was observed that the droplets will move downstream along the fiber surface under the effect of fluid shear, and the large droplets tend to coalesce with their downstream small droplets on the same fiber surface because they move faster compared to the small droplets. Second, it was found that the emulsified droplet will spontaneously transport to the intersection of two angled fibers under the drive of asymmetric Laplace pressure, which demonstrated that the emulsified droplets tend to gather at the intersection of fibers when permeating through a coalescing medium. Third, it was found that the detachment behaviors of droplets from the fiber surface are strongly affected by their size, fiber wettability, and fluid velocity. In addition, the results of our simulation show that the backside of two closely attached fibers can further inhibit the detachment of droplets. We truly believe that our research results are of significance to optimize the parameters of a fiber-based coalescer for separating oil-water emulsions and to develop novel oil/water separators.

20.
Bone Joint Res ; 9(10): 689-700, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33231490

RESUMO

AIMS: The study aimed to determine whether the microRNA miR21-5p (MiR21) mediates temporomandibular joint osteoarthritis (TMJ-OA) by targeting growth differentiation factor 5 (Gdf5). METHODS: TMJ-OA was induced in MiR21 knockout (KO) mice and wild-type (WT) mice by a unilateral anterior crossbite (UAC) procedure. Mouse tissues exhibited histopathological changes, as assessed by: Safranin O, toluidine blue, and immunohistochemistry staining; western blotting (WB); and quantitative real-time polymerase chain reaction (RT-qPCR). Mouse condylar chondrocytes were transfected with a series of MiR21 mimic, MiR21 inhibitor, Gdf5 siRNA (si-GDF5), and flag-GDF5 constructs. The effects of MiR-21 and Gdf5 on the expression of OA related molecules were evaluated by immunofluorescence, alcian blue staining, WB, and RT-qPCR. RESULTS: UAC altered the histological structure and extracellular matrix content of cartilage in the temporomandibular joint (TMJ), and KO of MiR21 alleviated this effect (p < 0.05). Upregulation of MiR21 influenced the expression of TMJ-OA related molecules in mandibular condylar chondrocytes via targeting Gdf5 (p < 0.05). Gdf5 overexpression significantly decreased matrix metalloproteinase 13 (MMP13) expression (p < 0.05) and reversed the effects of MiR21 (p < 0.05). CONCLUSION: MiR21, which acts as a critical regulator of Gdf5 in chondrocytes, regulates TMJ-OA related molecules and is involved in cartilage matrix degradation, contributing to the progression of TMJ-OA. Cite this article: Bone Joint Res 2020;9(10):689-700.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA