Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.672
Filtrar
1.
Sci Total Environ ; 803: 149910, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34500266

RESUMO

As an important pollutant, perfluorooctane acid (PFOA) has been widely concerned and reported by thousands of times, while less is known about the concentration-response pathway of PFOA. The aim of the present work was to reveal the concentration-response mechanism of PFOA in human cells. Omics results showed that calcium-related pathways play key roles in PFOA injury mechanisms. The results of GO and KEGG analyses showed that the cAMP signaling pathway was presented as the top one in all of the regulatory patterns and concentrations groups of PFOA. In the cAMP signaling pathway, the adenosine A1 receptor (ADORA1) recognized the low concentration of PFOA and induced pathway "Gi-cAMP-PKA" to decrease the concentration of cAMP. This indicated that the low concentration of PFOA may promote breast hyperplasia and inhibit lactation. While adenosine A2A receptor (ADORA2A) recognized the high concentration of PFOA and induced pathway "GS-AC-cAMP-RKA" to increase the concentration of cAMP, induce cell damage and may lead to the deterioration of breast cancer. The results of molecular dynamics simulation showed that PFOA could bind to ADORA1 and ADORA2A, thus cause subsequent signal transduction. Furthermore, considering the strong binding ability of PFOA with ADORA1, PFOA tends to bind to ADORA1 at a low concentration. On the other side, PFOA at high concentration will continue to bind to another receptor protein, ADORA2A, and activate subsequent signaling pathways. Combined analyses of transcriptomic and proteomic revealed that different concentrations of PFOA regulate cellular calcium-related pathways. The cAMP pathway showed a concentration-response effect of PFOA. After treatment with different concentrations of PFOA, ADORA1 and ADORA2A were activated respectively, showing opposite cellular effects, leading to kinds of breast lesions. In the nervous system, PFOA might induce a variety of nervous system diseases. The present work was an exploration on the toxicological mechanism of PFOA, providing important information on the health impacts of PFOA in humans.


Assuntos
Fluorcarbonetos , Proteômica , Feminino , Fluorcarbonetos/toxicidade , Humanos , Simulação de Dinâmica Molecular , Receptor A1 de Adenosina
2.
J Colloid Interface Sci ; 605: 828-850, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34371427

RESUMO

Although lithium-ion batteries (LIBs) have many advantages, they cannot satisfy the demands of numerous large energy storage industries owing to their high cost, low security, and low resource richness. Aqueous zinc-ion batteries (ZIBs) with low cost, high safety, and high synergistic efficiency have attracted an increasing amount of attention and are considered a promising choice to replace LIBs. However, the existing cathode materials for ZIBs have many shortcomings, such as poor electron and zinc ion conductivity and complex energy storage mechanisms. Thus, it is crucial to identify a cathode material with a stable structure, substantial limit, and suitability for ZIBs. In this review, several typical cathode materials for ZIBs employed in recent years and their detailed energy storage mechanisms are summarized, and various methods to enhance the electrochemical properties of ZIBs are briefly introduced. Finally, the existing problems and expected development directions of ZIBs are discussed.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 265: 120370, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34536887

RESUMO

In this work, a serials of PS(polystyrene)/Cu2S/Ag sandwich substrates were successfully constructed using the magnetic sputtering method by adjusting the Ag sputtering time (0 min, 2 min, 4 min, 6 min, 8 min and 10 min) and used as the surface-enhanced Raman scattering (SERS) substrates. When the Ag sputtering time was 6 min, the strongest SERS signal was observed. The optimized SERS substrate has strong SERS activity on 4-mercaptobenzoic acid (4-MBA), the minimum detection limit was 10-13 M and the enhancement factor was as high as 4.7 × 107. In addition, the SERS signals were highly reproducible with small standard deviation. The SERS enhancement mechanism of the PS/Cu2S/Ag system was attributed to the synergistic effect of the chemical mechanism and the electromagnetic enhancement mechanism. This strategy has find a new way for manufacturing SERS activity sensor with high sensitivity and reproducibility.


Assuntos
Nanopartículas Metálicas , Prata , Reprodutibilidade dos Testes , Análise Espectral Raman
4.
J Colloid Interface Sci ; 606(Pt 1): 248-260, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34390992

RESUMO

Regulating cell behavior and function by surface topography has drawn significant attention in tissue engineering. Herein, a gradient fibrous scaffold comprising anisotropic aligned fibers and isotropic annealed fibers was developed to provide a controllable direction of cell migration, adhesion, and spreading. The electrospun aligned fibers were engraved to create surface gradients with micro-and-nanometer roughness through block copolymer (BCP) self-assembly induced by selective solvent vapor annealing (SVA). The distinct manipulation of cell behavior by annealed fibrous scaffolds with tailored self-assembled nanostructure and welded fibrous microstructure has been illustrated by in situ/ex situ small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and in vitro cell culture. Further insights into the effect of integrated gradient fibrous scaffold were gained at the level of protein expression. From the perspective of gradient topology, this region-specific scaffold based on BCP fibers shows the prospect of guiding cell migration, adhesion and spreading and provides a generic method for designing biomaterials for tissue-engineering.


Assuntos
Engenharia Tecidual , Tecidos Suporte , Polímeros , Espalhamento a Baixo Ângulo , Difração de Raios X
5.
Environ Res ; 204(Pt A): 111999, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34506787

RESUMO

Overflow pollution is an undesired issue that commonly occurs in combined sewers under wet weather conditions. There is a lack of existing studies on the structural optimization of sewers to prevent siltation, and no previous study on egg-shaped sewers with this purpose has confirmed satisfactory anti-sedimentation performance. To achieve reduced sedimentation and lower energy loss under low- and high-flow conditions, respectively, the nondominated sorting genetic algorithm (NSGA-II) was adopted in this study based on a constant full filling discharge capacity equal to that of a 300 mm (diameter) circular sewer. The results showed that egg-shaped sewers with bottom and top arc radii of 58.3 and 116.6 mm, respectively, and a height of 408.1 mm performed significantly better than circular sewers (d = 300 mm). Notably, at a low flow ratio below 0.2, the shear stress of the optimized egg-shaped sewer was 5.2%-20.6% higher than that of the circular sewer. At a flow ratio of 0.2-0.6, both the egg-shaped and circular sewers were capable of maintaining a balanced amount of sediment between deposition and erosion. As the flow ratio increased to 0.6-1, both types of sewers completely scoured sediments: in this situation, the shear stress of the egg-shaped sewer was 5.5%-10.1% lower than that of the circular sewer, thus exhibiting reduced energy loss. This study indicates that egg-shaped sewers have an attractive future in replacing circular sewers for sedimentation prevention and cost control.

6.
Sci Total Environ ; 806(Pt 2): 150705, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34600988

RESUMO

In the coastal zones, numerous ecological shelterbelt projects were conducted to protect against natural hazards. However, it is still not fully understood whether phytoremediation with native legume Albizzia julibrissin plantation can improve saline soil structural development or microbial community structure. In this study, a field experiment was conducted to investigate the responses of rhizosphere soil salinity, nutrients, bacterial community, and aggregate structure to A. julibrissin plantation in a recently reclaimed area along Zhejiang coast, China. After ~3-year plantation, rhizosphere soil pH and EC reduced to 8.25 and 0.14 dS·m-1, respectively, belonging to non-saline soil. Meanwhile, total organic carbon (TOC), permanganate-oxidizable carbon (POXC), total nitrogen (TN), alkali-hydrolyzable nitrogen (AN), and ammonium nitrogen (NH4+-N) were significantly increased in rhizosphere soil compared with bare land (P < 0.05). Consequently, rhizosphere soil had favorable habitat condition for copiotrophic bacterial taxa (e.g., Chloroflexi, Acidobacteria, and Bacteroidates), as well as high diversity, complex co-occurrence network, and catabolism related with nutrient cycling. The soil particle size of bare land was < 0.053 mm, while microaggregate (0.053-0.25 mm) and macroaggregate (0.25-2 mm) were formed in the rhizosphere and coupled with C accumulation and Fe removal. Soil aggregates were of great importance to soil fertility with more efficient bacterial network and biogeochemical cycles of nutrients. N-fixing Rhizobiales preferred to inhabit large soil particle and might primarily contribute to N accumulation. Generally, A. julibrissin was a suitable pioneer tree for mudflat reclamation projects, which effectively improved saline soil rhizosphere environment by reducing salinity, accumulating C and N, and promoting microbial community succession, as well as aggregate structure formation.

7.
Environ Res ; 203: 111870, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34390719

RESUMO

Ferrihydrite (Fh), a precursor of more crystalline Fe (hydr)oxides, exhibits decent catalytic behavior; however, the instability of its amorphous structure limits its engineering applications. Siliceous ferrihydrite (FhSi) was readily synthesized in this study by co-precipitation. The formation of Fe-O-Si linkages did not alter the amorphous state of pure Fh, but increased the surface area (SBET), reduced the point of zero charge (pHZPC), and prevented the leaching of more iron. X-ray diffraction, Mössbauer and pyridine-Fourier transform infrared (FTIR) spectroscopies, and potentiometric titration revealed the presence of silicon-occupied portions of growth sites on the Fh surface, which increased the coordination symmetry around the Fe atom and inhibited the transition of Fh to more stable crystalline Fe (hydr)oxides during repeated use. Meanwhile, the density of surface hydroxyl groups (Ds) and the total acid content of the catalytic system after five cycles of catalytic ozonation were 56.75 % and 63.58 % higher than those of freshly prepared system, thereby benefiting the catalysis of ozone for generating ·OH. In addition, the lower pHZPC of the FhSi/O3 system compared to that of the Fh/O3 system promoted the generation of neutral surface-hydroxyl species on the surface of FhSi, which enabled a decent catalytic performance in alkaline solutions, regardless of the catalytic cycle. Moreover, the removal of humic acids (HA) followed a hydroxy radical reaction, which involved self-decomposition (14.15 %), catalytic ozonation (21.58 %), and peroxone and Fenton-like reactions (64.27 %).

8.
Sci Total Environ ; 806(Pt 1): 150365, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34555611

RESUMO

Hydrogen sulfide (H2S) is a highly toxic gas in many environmental and occupational places. It can induce multiple organ injuries particularly in lung, trachea and liver, but the relevant mechanisms remain poorly understood. In this study, we used a TMT-based discovery proteomics to identify key proteins and correlated molecular pathways involved in the pathogenesis of acute H2S-induced toxicity in porcine lung, trachea and liver tissues. Pigs were subjected to acute inhalation exposure of up to 250 ppm of H2S for 5 h for the first time. Changes in hematology and biochemical indexes, serum inflammatory cytokines and histopathology demonstrated that acute H2S exposure induced organs inflammatory injury and dysfunction in the porcine lung, trachea and liver. The proteomic data showed 51, 99 and 84 proteins that were significantly altered in lung, trachea and liver, respectively. Gene ontology (GO) annotation, KEGG pathway and protein-protein interaction (PPI) network analysis revealed that acute H2S exposure affected the three organs via different mechanisms that were relatively similar between lung and trachea. Further analysis showed that acute H2S exposure caused inflammatory damages in the porcine lung and trachea through activating complement and coagulation cascades, and regulating the hyaluronan metabolic process. Whereas antigen presentation was found in the lung but oxidative stress and cell apoptosis was observed exclusively in the trachea. In the liver, an induced dysfunction was associated with protein processing in the endoplasmic reticulum and lipid metabolism. Further validation of some H2S responsive proteins using western blotting indicated that our proteomics data were highly reliable. Collectively, these findings provide insight into toxic molecular mechanisms that could potentially be targeted for therapeutic intervention for acute H2S intoxication.


Assuntos
Sulfeto de Hidrogênio , Animais , Sulfeto de Hidrogênio/toxicidade , Inflamação , Exposição por Inalação , Estresse Oxidativo , Proteômica , Suínos
9.
Phytomedicine ; 94: 153816, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34752969

RESUMO

BACKGROUND: The identification of novel therapeutic candidates from natural products for the development of chemoresistant glioblastoma multiforme (GBM) treatment has been a highly significant and effective strategy. PURPOSE: Sesquiterpenes are a class of naturally occurring 15-carbon isoprenoid compounds, and several types of sesquiterpenes have the ability to induce growth inhibition and apoptosis in a variety of cancer cell lines. In the present study, 56 sesquiterpenes of five types, namely, eudesmane-type (I) (1-24), eremophilane-type (II) (25-32), cadinane-type (III) (33-41), guaiane-type (IV) (42-49), and oplopanone-type (V) (50-56), were screened for their antiglioma activity, structure-activity relationship analysis (SAR), and underlying mechanism based on patient-derived recurrent GBM strains, patient-derived GBM cell sphere, GBM organoid (GBO) models, and temozolomide (TMZ)-resistant GBM cell lines. RESULTS: We found that compound 12 (oxyphyllanene B, OLB) showed the most potent antiglioma activity, and we confirmed that OLB could induce apoptosis in a time- and dose-dependent manner in TMZ-resistant GBM cells and GBOs. SAR announced that the presence of an α, ß-unsaturated carbonyl moiety was likely to enhance cytotoxic activities. Mechanistic studies demonstrated that OLB induced abnormal changes in ER and mitochondria-associated membrane (MAM) networks, which triggered ER stress, mitochondrial dysfunction, and apoptosis. Furthermore, our findings suggested that OLB-triggered PACS2 activation might form a committed step to disrupt ER-mitochondria communication and showed for the first time that the expression levels of PACS2 might positively correlate with the progression and chemotherapy resistance of glioma. CONCLUSION: Our results indicated that OLB might be a promising candidate for treating TMZ-resistant GBM cells by activating PACS2, which triggered a crucial event to promote the disruption of ER-mitochondria communication and overcome chemotherapy resistance of GBM.

10.
Food Chem ; 372: 130766, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34600197

RESUMO

Raspberry anthocyanins were isolated and purified by XAD-7HP macroporous resin and silica gel column chromatography. Anthocyanins were then acylated with methyl salicylate as catalyzed by lipase under reduced pressure, and the conversion rate was 84.26%. LC-MS and NMR were used to identify the structure, and the stability, antioxidant capacity and protective ability of the acylated anthocyanins against oxidative damage were determined. The results showed that cyanindin-3-O-glucoside (C3G) was the primary anthocyanin in raspberry, and the binding site of acylation was on the glucoside C-6, and the product was cyanidin-3-(6-salicyloyl) glucoside (C3-6(S) G). After acylation, its stability in light, heat and oxidation environments could be significantly improved, and acylated ACN showed insignificant changes in antioxidant capacities to scavenge DPPH and ABTS free radicals, as well as oxygen free radical absorptive capacity (ORAC). And it could also effectively prevent the release of ROS caused by oxidative damage and alleviate oxidative stress damage.


Assuntos
Antocianinas , Rubus , Acilação , Antioxidantes , Estresse Oxidativo
11.
Small ; : e2104857, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34850563

RESUMO

Photodynamic therapy (PDT) with organic photosensitizers generally goes through the oxygen-dependent process, generating singlet oxygen and/or superoxide anion. However, the generation of reactive oxygen species is often suppressed as a result of hypoxia, one of the common features in tumors, therefore limiting the effectiveness of the tumor treatments. Consequently, it is urgent and significant to develop an oxygen-independent hydroxyl radical photogenerator and unveil the mechanism. In this work, a hydroxyl radical (·OH) photogenerator originating from the electron transfer process is engineered. Detailed mechanism studies reveal that the optimized photosensitizer, WS2D, which contains a bithiophene unit, could both promote charge carrier generation and accelerate reaction efficiency, resulting in the efficient production of ·OH. In addition, WS2D nanoparticles are constructed to improve the polydispersity and stability in aqueous solution, which exhibit excellent biocompatibility and mitochondrial targeting. Bearing the above advantages, WS2D is employed in phototheranostics, which could release ·OH effectively and damage mitochondria precisely, achieving high PDT efficiency in vitro and in vivo. Overall, this work successfully provides valuable insights into the structural design of a hydroxyl radicals (·OH) photogenerator with great practical perspectives.

12.
Zygote ; : 1-7, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851248

RESUMO

The purpose of this study was to investigate the effect of RFRP-3 synchronized with photoperiods on regulating the seasonal reproduction of striped hamsters. The striped hamsters were raised separately under long-day (LD; 16 h light/8 h dark), medium-day (MD; 12 h light/12 h dark) or short-day (SD; 8 h light/16 h dark) conditions for 8 weeks. RFRP-3 and gonadotropin-releasing hormone (GnRH) mRNA levels in the hypothalamus, testis or ovaries in three groups were detected using reverse transcription polymerase chain reaction (RT-PCR). Melatonin (MLT), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) concentrations in serum were detected using enzyme-linked immunosorbent assay (ELISA). The correlation between RFRP-3 and GnRH mRNA and FSH and LH concentrations was also analyzed. MLT negatively regulated the expression of RFRP-3. Significant differences for RFRP-3 mRNA existed in the three groups, which positively correlated with the GnRH and the FSH and LH concentrations. RFRP-3 mRNA levels in the hypothalamus were significantly higher than those in ovaries or testis. RFRP-3 levels in the hypothalamus were significantly lower in female than in male under SD conditions, while those in ovaries were significantly higher than those in testes under LD conditions. MLT decreased RFRP neuron activity, and RFRP-3 regulated the reproduction of striped hamsters.

13.
Artigo em Inglês | MEDLINE | ID: mdl-34854300

RESUMO

Stoichiometric Cr2Se3 single crystals are particular layer-structured antiferromagnets, which possess a noncollinear spin configuration, weak ferromagnetic moments, moderate magnetoresistance (MR ∼14.3%), and poor metallic conductivity below the antiferromagnetic phase transition. Here, we report an interesting >16 000% colossal magnetoresistance (CMR) effect in Ti (1.5 atomic percent) lightly doped Cr2Se3 single crystals. Such a CMR is approximately 1143 times larger than that of the stoichiometric Cr2Se3 crystals and is rarely observed in layered antiferromagnets and is attributed to the frustrated spin configuration. Moreover, the Ti doping not only dramatically changes the electronic conductivity of the Cr2Se3 crystal from a bad metal to a semiconductor with a gap of ∼15 meV but also induces a change in the magnetic anisotropy of the Cr2Se3 crystal from strong out-of-plane to weak in-plane. Further, magnetotransport measurements reveal that the low-field MR scales with the square of the reduced magnetization, which is a signature of CMR materials. The layered Ti:Cr2Se3 with the CMR effect could be used as two-dimensional (2D) heterostructure building blocks to provide colossal negative MR in spintronic devices.

14.
Front Immunol ; 12: 774052, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858433

RESUMO

Abstract: Systemic chronic microinflammation and altered cytokine signaling, with adjunct cardiovascular disease (CVD), endothelial maladaptation and dysfunction is common in dialysis patients suffering from end-stage renal disease and associated with increased morbidity and mortality. New hemodialysis filters might offer improvements. We here studied the impact of novel improved molecular cut-off hemodialysis filters on systemic microinflammation, uremia and endothelial dysfunction. Human endothelial cells (ECs) were incubated with uremic serum obtained from patients treated with two different hemodialysis regimens in the Permeability Enhancement to Reduce Chronic Inflammation (PERCI-II) crossover clinical trial, comparing High-Flux (HF) and Medium Cut-Off (MCO) membranes, and then assessed for their vascular endothelial growth factor (VEGF) production and angiogenesis. Compared to HF membranes, dialysis with MCO membranes lead to a reduction in proinflammatory mediators and reduced endothelial VEGF production and angiogenesis. Cytokine multiplex screening identified tumor necrosis factor (TNF) superfamily members as promising targets. The influence of TNF-α and its soluble receptors (sTNF-R1 and sTNF-R2) on endothelial VEGF promoter activation, protein release, and the involved signaling pathways was analyzed, revealing that this detrimental signaling was indeed induced by TNF-α and mediated by AP-1/c-FOS signaling. In conclusion, uremic toxins, in particular TNF-signaling, promote endothelial maladaptation, VEGF expression and aberrant angiogenesis, which can be positively modulated by dialysis with novel MCO membranes. Translational Perspective and Graphical Abstract: Systemic microinflammation, altered cytokine signaling, cardiovascular disease, and endothelial maladaptation/dysfunction are common clinical complications in dialysis patients suffering from end-stage renal disease. We studied the impact of novel improved medium-cut-off hemodialysis filters on uremia and endothelial dysfunction. We can show that uremic toxins, especially TNF-signaling, promote endothelial maladaptation, VEGF expression and aberrant angiogenesis, which can be positively modulated by dialysis with novel improved medium-cut-off membranes.

15.
Phys Rev Lett ; 127(20): 204101, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34860068

RESUMO

We study the statistical properties of the complex generalization of Wigner time delay τ_{W} for subunitary wave-chaotic scattering systems. We first demonstrate theoretically that the mean value of the Re[τ_{W}] distribution function for a system with uniform absorption strength η is equal to the fraction of scattering matrix poles with imaginary parts exceeding η. The theory is tested experimentally with an ensemble of microwave graphs with either one or two scattering channels and showing broken time-reversal invariance and variable uniform attenuation. The experimental results are in excellent agreement with the developed theory. The tails of the distributions of both real and imaginary time delay are measured and are also found to agree with theory. The results are applicable to any practical realization of a wave-chaotic scattering system in the short-wavelength limit, including quantum wires and dots, acoustic and electromagnetic resonators, and quantum graphs.

16.
Front Oncol ; 11: 740111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765549

RESUMO

Objectives: The aim of this study was to develop a preoperative positron emission tomography (PET)-based radiomics model for predicting peritoneal metastasis (PM) of gastric cancer (GC). Methods: In this study, a total of 355 patients (109PM+, 246PM-) who underwent preoperative fluorine-18-fludeoxyglucose (18F-FDG) PET images were retrospectively analyzed. According to a 7:3 ratio, patients were randomly divided into a training set and a validation set. Radiomics features and metabolic parameters data were extracted from PET images. The radiomics features were selected by logistic regression after using maximum relevance and minimum redundancy (mRMR) and the least shrinkage and selection operator (LASSO) method. The radiomics models were based on the rest of these features. The performance of the models was determined by their discrimination, calibration, and clinical usefulness in the training and validation sets. Results: After dimensionality reduction, 12 radiomics feature parameters were obtained to construct radiomics signatures. According to the results of the multivariate logistic regression analysis, only carbohydrate antigen 125 (CA125), maximum standardized uptake value (SUVmax), and the radiomics signature showed statistically significant differences between patients (P<0.05). A radiomics model was developed based on the logistic analyses with an AUC of 0.86 in the training cohort and 0.87 in the validation cohort. The clinical prediction model based on CA125 and SUVmax was 0.76 in the training set and 0.69 in the validation set. The comprehensive model, which contained a rad-score and the clinical factor (CA125) as well as the metabolic parameter (SUVmax), showed promising performance with an AUC of 0.90 in the training cohort and 0.88 in the validation cohort, respectively. The calibration curve showed the actual rate of the nomogram-predicted probability of peritoneal metastasis. Decision curve analysis (DCA) also demonstrated the good clinical utility of the radiomics nomogram. Conclusions: The comprehensive model based on the rad-score and other factors (SUVmax, CA125) can provide a novel tool for predicting peritoneal metastasis of gastric cancer patients preoperatively.

17.
Front Cardiovasc Med ; 8: 751519, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765657

RESUMO

Background: Obstructive sleep apnea is an atherogenesis factor of which chronic intermittent hypoxia is a prominent feature. Chronic intermittent hypoxia (CIH) exposure can sufficiently activate the sympathetic system, which acts on the ß3 adrenergic receptors of brown adipose tissue (BAT). However, the activity of BAT and its function in CIH-induced atherosclerosis have not been fully elucidated. Methods: This study involved ApoE-/- mice which were fed with a high-fat diet for 12 weeks and grouped into control and CIH group. During the last 8 weeks, mice in the CIH group were housed in cages to deliver CIH (12 h per day, cyclic inspiratory oxygen fraction 5-20.9%, 180 s cycle). Atherosclerotic plaques were evaluated by Oil Red O, hematoxylin and eosin, Masson staining, and immunohistochemistry. Afterward, we conducted immunohistochemistry, western blotting, and qRT-PCR of uncoupling protein 1 (UCP1) to investigate the activation of BAT. The level of serum total cholesterol (TC), triglyceride, low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), and free fatty acid (FFA) were measured. Finally, RNA-Sequencing was deployed to explore the differentially expressed genes (DEGs) and their enriched pathways between control and CIH groups. Results: Chronic intermittent hypoxia exposure promoted atherosclerotic plaque area with increasing CD68, α-SMA, and collagen in plaques. BAT activation was presented during CIH exposure with UCP1 up-regulated. Serum TC, triglyceride, LDL-c, and FFA were increased accompanied by BAT activation. HDL-c was decreased. Mechanistically, 43 lipolysis and lipid metabolism-associated mRNA showed different expression profiling between the groups. Calcium, MAPK, and adrenergic signaling pathway included the most gene number among the significantly enriched pathways. Conclusion: This study first demonstrated that BAT activation is involved in the progression of CIH-induced atherosclerosis, possibly by stimulating lipolysis.

18.
Artigo em Inglês | MEDLINE | ID: mdl-34773671

RESUMO

OBJECTIVES: Antidepressants are effective in the treatment of Major Depressive Disorder (MDD), while many patients fail to respond to antidepressants. Both 5-HT1A (HTR1A) and 5-HT1B (HTR1B) receptors play an important role in antidepressant activity. Meanwhile, DNA methylation is associated with MDD and antidepressant efficacy. In this study we investigate the influence of HTR1A and HTR1B methylation combined with stress/genotype on antidepressant efficacy. METHODS: A total of 291 MDD patients and 100 healthy controls received the Life Events Scale (LES) and the Childhood Trauma Questionnaire (CTQ) as stress assessment. Eight single nucleotide polymorphisms (SNPs) of HTR1A and HTR1B involved in antidepressant mechanisms were tested. Methylation status in 181 cytosine-phosphate-guanine (CpG) sites of HTR1A and HTR1B were assessed. All MDD patients were divided into response (RES) and non-response (NRES) after 2 weeks of antidepressant treatment. Logistic regression was conducted for interactions between methylation, NLES/CTQ score and genotype. RESULTS: Low HTR1A-2-143 methylation is connected with better antidepressant efficacy in subgroup. Low HTR1A-2-143 methylation combined with low CTQ score is related to better antidepressant efficacy. The interaction between high HTR1B methylation with the rs6298 AA/AG genotype affects better antidepressant efficacy. CONCLUSIONS: HTR1A and HTR1B methylation combined with stress/genotype is associated with antidepressant efficacy. This article is protected by copyright. All rights reserved.

19.
Front Oncol ; 11: 678847, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778023

RESUMO

Objectives: To analyze the clinical outcomes of Transarterial chemoembolization (TACE) for unresectable or "ablation unsuitable" hepatocellular carcinoma (HCC) in the caudate lobe (CL) found at initial presentation in clinical practice. Methods: Fifty-eight patients with HCC-CL undergoing conventional TACE from January 2015 to January 2020 were enrolled in our medical center. Overall survival (OS), progression-free survival (PFS), tumor response rate and major complication rates were analyzed. Multivariate analyses for potential clinical and radiologic factors were performed by using the Cox proportional hazard model. Results: The median OS was 23 months (95%CI: 18.1-27.9), and the median PFS was 11 months (95%CI: 7.4-14.6). The 1-, 3-, and 5-years OS rates were 66.5%, 31.9% and 15.7%, respectively. The 0.5, 1-, and 3-years PFS rates were 60.3%, 44.5% and 6.3%, respectively. Objective response rate was 53.4% and disease control rate was 79.3%. The most serious complication was bile duct injury, with an incidence of 3.4%. Multivariable analysis revealed that total bilirubin, Barcelona Clinic Liver Cancer stage, nonselective chemoembolization and TACE session were four significant factors associated with OS. Conclusions: Superselective TACE treatment might be associated with better survival benefits in unresectable or "ablation unsuitable" HCC in the CL without macroscopic vascular invasion (MVI) and adequate liver function, compared with the non-selective TACE group, and should be considered as an important reliable therapy for surgeons and interventional radiologists.

20.
Materials (Basel) ; 14(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34771923

RESUMO

The rectangular magnetoelectric (ME) composites of Metglas/PZT and Terfenol-D/PZT are prepared, and the effects of a magnetostrictive layer's material characteristics on the magnetoimpedance of ME composite are discussed and experimentally investigated. The theoretical analyses show that the impedance is not only dependent on Young's modulus and the magnetostrictive strain of magnetostrictive material but is also influenced by its relative permeability. Compared with Terfenol-D, Metglas possesses significantly higher magnetic permeability and larger magnetostrictive strain at quite low Hdc due to the small saturation field, resulting in the larger magnetoimpedance ratio. The experimental results demonstrate that the maximum magnetoimpedance ratios (i.e., ΔZ/Z) of Metglas/PZT composite are about 605.24% and 239.98% at the antiresonance and resonance, respectively. Specifically, the maximum ΔZ/Z of Metglas/PZT is 8.6 times as high as that of Terfenol-D/PZT at the antiresonance. Such results provide the fundamental guidance in the design and fabrication of novel multifunction devices based on the magnetoimpedance effect of ME composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...