Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e1905132, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31967707

RESUMO

Nanoelectronic devices based on ferroelectric domain walls (DWs), such as memories, transistors, and rectifiers, have been demonstrated in recent years. Practical high-speed electronics, on the other hand, usually demand operation frequencies in the gigahertz (GHz) regime, where the effect of dipolar oscillation is important. Herein, an unexpected giant GHz conductivity on the order of 103 S m-1 is observed in certain BiFeO3 DWs, which is about 100 000 times greater than the carrier-induced direct current (dc) conductivity of the same walls. Surprisingly, the nominal configuration of the DWs precludes the alternating current (ac) conduction under an excitation electric field perpendicular to the surface. Theoretical analysis shows that the inclined DWs are stressed asymmetrically near the film surface, whereas the vertical walls in a control sample are not. The resultant imbalanced polarization profile can then couple to the out-of-plane microwave fields and induce power dissipation, which is confirmed by the phase-field modeling. Since the contributions from mobile-carrier conduction and bound-charge oscillation to the ac conductivity are equivalent in a microwave circuit, the research on local structural dynamics may open a new avenue to implement DW nano-devices for radio-frequency applications.

2.
Nature ; 577(7790): 350-354, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31942055

RESUMO

Transparent piezoelectrics are highly desirable for numerous hybrid ultrasound-optical devices ranging from photoacoustic imaging transducers to transparent actuators for haptic applications1-7. However, it is challenging to achieve high piezoelectricity and perfect transparency simultaneously because most high-performance piezoelectrics are ferroelectrics that contain high-density light-scattering domain walls. Here, through a combination of phase-field simulations and experiments, we demonstrate a relatively simple method of using an alternating-current electric field to engineer the domain structures of originally opaque rhombohedral Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) crystals to simultaneously generate near-perfect transparency, an ultrahigh piezoelectric coefficient d33 (greater than 2,100 picocoulombs per newton), an excellent electromechanical coupling factor k33 (about 94 per cent) and a large electro-optical coefficient γ33 (approximately 220 picometres per volt), which is far beyond the performance of the commonly used transparent ferroelectric crystal LiNbO3. We find that increasing the domain size leads to a higher d33 value for the [001]-oriented rhombohedral PMN-PT crystals, challenging the conventional wisdom that decreasing the domain size always results in higher piezoelectricity8-10. This work presents a paradigm for achieving high transparency and piezoelectricity by ferroelectric domain engineering, and we expect the transparent ferroelectric crystals reported here to provide a route to a wide range of hybrid device applications, such as medical imaging, self-energy-harvesting touch screens and invisible robotic devices.

3.
Adv Mater ; 32(7): e1906224, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31880026

RESUMO

The availability of materials with high electrocaloric (EC) strengths is critical to enabling EC refrigeration in practical applications. Although large EC entropy changes, ΔSEC , and temperature changes, ΔTEC , have been achieved in traditional thin-film ceramics and polymer ferroelectrics, they require the application of very high electric fields and thus their EC strengths ΔSEC /ΔE and ΔTEC /ΔE are too low for practical applications. Here, a fundamental thermodynamic description is developed, and extraordinarily large EC strengths of a metal-free perovskite ferroelectric [MDABCO](NH4 )I3 (MDABCO) are predicted. The predicted EC strengths: isothermal ΔSEC /ΔE and adiabatic ΔTEC /ΔE for MDABCO are 18 J m kg-1 K-1 MV-1 and 8.06 K m MV-1 , respectively, more than three times the largest reported values in BaTiO3 single crystals. These predictions strongly suggest the metal-free ferroelectric family of materials as the best candidates among existing materials for EC applications. The present work not only presents a general approach to developing thermodynamic potential energy functions for ferroelectric materials but also suggests a family of candidate materials with potentially extremely high EC performance.

4.
Adv Mater ; 31(48): e1902890, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31588637

RESUMO

Domain wall nanoelectronics is a rapidly evolving field, which explores the diverse electronic properties of the ferroelectric domain walls for application in low-dimensional electronic systems. One of the most prominent features of the ferroelectric domain walls is their electrical conductivity. Here, using a combination of scanning probe and scanning transmission electron microscopy, the mechanism of the tunable conducting behavior of the domain walls in the sub-micrometer thick films of the technologically important ferroelectric LiNbO3 is explored. It is found that the electric bias generates stable domains with strongly inclined domain boundaries with the inclination angle reaching 20° with respect to the polar axis. The head-to-head domain boundaries exhibit high conductance, which can be modulated by application of the sub-coercive voltage. Electron microscopy visualization of the electrically written domains and piezoresponse force microscopy imaging of the very same domains reveals that the gradual and reversible transition between the conducting and insulating states of the domain walls results from the electrically induced wall bending near the sample surface. The observed modulation of the wall conductance is corroborated by the phase-field modeling. The results open a possibility for exploiting the conducting domain walls as the electrically controllable functional elements in the multilevel logic nanoelectronics devices.

5.
Science ; 366(6464): 475-479, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31649196

RESUMO

Ferroelectrics are usually inflexible oxides that undergo brittle deformation. We synthesized freestanding single-crystalline ferroelectric barium titanate (BaTiO3) membranes with a damage-free lifting-off process. Our BaTiO3 membranes can undergo a ~180° folding during an in situ bending test, demonstrating a super-elasticity and ultraflexibility. We found that the origin of the super-elasticity was from the dynamic evolution of ferroelectric nanodomains. High stresses modulate the energy landscape markedly and allow the dipoles to rotate continuously between the a and c nanodomains. A continuous transition zone is formed to accommodate the variant strain and avoid high mismatch stress that usually causes fracture. The phenomenon should be possible in other ferroelectrics systems through domain engineering. The ultraflexible epitaxial ferroelectric membranes could enable many applications such as flexible sensors, memories, and electronic skins.

6.
Nat Commun ; 10(1): 4809, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31641122

RESUMO

The ability to manipulate domains underpins function in applications of ferroelectrics. While there have been demonstrations of controlled nanoscale manipulation of domain structures to drive emergent properties, such approaches lack an internal feedback loop required for automatic manipulation. Here, using a deep sequence-to-sequence autoencoder we automate the extraction of latent features of nanoscale ferroelectric switching from piezoresponse force spectroscopy of tensile-strained PbZr0.2Ti0.8O3 with a hierarchical domain structure. We identify characteristic behavior in the piezoresponse and cantilever resonance hysteresis loops, which allows for the classification and quantification of nanoscale-switching mechanisms. Specifically, we identify elastic hardening events which are associated with the nucleation and growth of charged domain walls. This work demonstrates the efficacy of unsupervised neural networks in learning features of a material's physical response from nanoscale multichannel hyperspectral imagery and provides new capabilities in leveraging in operando spectroscopies that could enable the automated manipulation of nanoscale structures in materials.

7.
Nano Lett ; 19(11): 7901-7907, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31596599

RESUMO

Achieving efficient spatial modulation of phonon transmission is an essential step on the path to phononic circuits using "phonon currents". With their intrinsic and reconfigurable interfaces, domain walls (DWs), ferroelectrics are alluring candidates to be harnessed as dynamic heat modulators. This paper reports the thermal conductivity of single-crystal PbTiO3 thin films over a wide variety of epitaxial-strain-engineered ferroelectric domain configurations. The phonon transport is proved to be strongly affected by the density and type of DWs, achieving a 61% reduction of the room-temperature thermal conductivity compared to the single-domain scenario. The thermal resistance across the ferroelectric DWs is obtained, revealing a very high value (≈5.0 × 10-9 K m2 W-1), comparable to grain boundaries in oxides, explaining the strong modulation of the thermal conductivity in PbTiO3. This low thermal conductance of the DWs is ascribed to the structural mismatch and polarization gradient found between the different types of domains in the PbTiO3 films, resulting in a structural inhomogeneity that extends several unit cells around the DWs. These findings demonstrate the potential of ferroelectric DWs as efficient regulators of heat flow in one single material, overcoming the complexity of multilayers systems and the uncontrolled distribution of grain boundaries, paving the way for applications in phononics.

8.
Nano Lett ; 19(10): 6812-6818, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31508969

RESUMO

Ferroelectric heterostructures, with capability of storing data at ultrahigh densities, could act as the platform for next-generation memories. The development of new device paradigms has been hampered by the long-standing notion of inevitable ferroelectricity suppression under reduced dimensions. Despite recent experimental observation of stable polarized states in ferroelectric ultrathin films, the out-of-plane polarization components in these films are strongly attenuated compared to thicker films, implying a degradation of device performance in electronic miniaturization processes. Here, in a model system of BiFeO3/La0.7Sr0.3MnO3, we report observation of a dramatic out-of-plane polarization enhancement that occurs with decreasing film thickness. Our electron microscopy analysis coupled with phase-field simulations reveals a polarization-enhancement mechanism that is dominated by the accumulation of oxygen vacancies at interfacial layers. The results shed light on the interplay between polarization and defects in nanoscale ferroelectrics and suggest a route to enhance functionality in oxide devices.

9.
Nat Commun ; 10(1): 3951, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477695

RESUMO

Ferroelastic switching in ferroelectric/multiferroic oxides plays a crucial role in determining their dielectric, piezoelectric, and magnetoelectric properties. In thin films of these materials, however, substrate clamping is generally thought to limit the electric-field- or mechanical-force-driven responses to the local scale. Here, we report mechanical-force-induced large-area, non-local, collective ferroelastic domain switching in PbTiO3 epitaxial thin films by tuning the misfit-strain to be near a phase boundary wherein c/a and a1/a2 nanodomains coexist. Phenomenological models suggest that the collective, c-a-c-a ferroelastic switching arises from the small potential barrier between the degenerate domain structures, and the large anisotropy of a and c domains, which collectively generates much larger response and large-area domain propagation. Large-area, non-local response under small stimuli, unlike traditional local response to external field, provides an opportunity of unique response to local stimuli, which has potential for use in high-sensitivity pressure sensors and switches.

10.
Phys Rev Lett ; 123(8): 087603, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31491229

RESUMO

Very sensitive responses to external forces are found near phase transitions. However, transition dynamics and preequilibrium phenomena are difficult to detect and control. We have observed that the equilibrium domain structure following a phase transition in ferroelectric and ferroelastic BaTiO_{3} is attained by halving of the domain periodicity multiple times. The process is reversible, with periodicity doubling as temperature is increased. This observation is reminiscent of the period-doubling cascades generally observed during bifurcation phenomena, and, thus, it conforms to the "spatial chaos" regime earlier proposed by Jensen and Bak [Phys. Scr. T 9, 64 (1985)PHSTER0281-184710.1088/0031-8949/1985/T9/009] for systems with competing spatial modulations.

11.
Science ; 365(6453): 578-582, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31395780

RESUMO

Dielectric capacitors with ultrahigh power densities are fundamental energy storage components in electrical and electronic systems. However, a long-standing challenge is improving their energy densities. We report dielectrics with ultrahigh energy densities designed with polymorphic nanodomains. Guided by phase-field simulations, we conceived and synthesized lead-free BiFeO3-BaTiO3-SrTiO3 solid-solution films to realize the coexistence of rhombohedral and tetragonal nanodomains embedded in a cubic matrix. We obtained minimized hysteresis while maintaining high polarization and achieved a high energy density of 112 joules per cubic centimeter with a high energy efficiency of ~80%. This approach should be generalizable for designing high-performance dielectrics and other functional materials that benefit from nanoscale domain structure manipulation.

12.
Nano Lett ; 19(8): 5319-5326, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31268341

RESUMO

Composition gradients, or dissimilar ferroelectric bilayers, demonstrate colossal electromechanical figures of merit attributed to the motion of ferroelastic domain walls. Yet, mechanistic understanding of polarization switching pathways that drive ferroelastic switching in these systems remains elusive. Here, the crucial roles of strain and electrostatic boundary conditions in ferroelectric bilayer systems are revealed, which underpin their ferroelastic switching dynamics. Using in situ electrical biasing in the transmission electron microscope (TEM), the motion of ferroelastic domain walls is investigated in a tetragonal (T) Pb(Zr,Ti)O3 (PZT)/rhombohedral (R) PZT epitaxial bilayer system. Atomic resolution electron microscopy, in tandem with phase field simulations, indicates that ferroelastic switching is triggered by predominant nucleation at the triple domain junctions located at the interface between the T/R layers. Furthermore, this interfacial nucleation leads to systematic reversable reorientation of ferroelastic domain walls. Deterministic ferroelastic domain switching, driven by the interfacial strain and electrostatic boundary conditions in the ferroelectric bilayer, provides a viable pathway toward novel design of miniaturized energy-efficient electromechanical devices.

13.
BMC Genet ; 20(1): 55, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31288742

RESUMO

BACKGROUND: Apogamy is a unique asexual reproduction in the ferns, in which somatic cells of gametophytes go through dedifferentiation and then differentiate into haploid sporophytes bypassing fertilization. Restricted to the lack of genomic information, molecular mechanisms of apogamy have remained unclear. Comparative transcriptome analysis was conducted at six stages between sexual reproduction and apogamy in the fern Adiantum reniforme var. sinense, in an effort to identify genes and pathways that might initiate the asexual reproduction. RESULTS: Approximately 928 million high-quality clean reads were assembled into 264,791 unigenes with an average length of 615 bp. A total of 147,865 (55.84%) unigenes were successfully annotated. Differential genes expression analysis indicated that transcriptional regulation was more active in the early stage of apogamy compared to sexual reproduction. Further comparative analysis of the enriched pathways between the early stages of the two reproductive modes demonstrated that starch and sucrose metabolism pathway responsible for cell wall was only significantly enriched in asexual embryonic cell initiation. Furthermore, regulation of plant hormone related genes was more vigorous in apogamy initiation. CONCLUSION: These findings would be useful for revealing the initiation of apogamy and further understanding of the mechanisms related to asexual reproduction.


Assuntos
Adiantum/genética , Perfilação da Expressão Gênica , Reprodução/genética , Transcriptoma , Adiantum/metabolismo , Vias Biossintéticas , Biologia Computacional/métodos , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genômica/métodos , Células Germinativas Vegetais/metabolismo , Anotação de Sequência Molecular , Fenótipo , Reprodutibilidade dos Testes
14.
Adv Mater ; 31(36): e1901014, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31322297

RESUMO

The manipulation of charge and lattice degrees of freedom in atomically precise, low-dimensional ferroelectric superlattices can lead to exotic polar structures, such as a vortex state. The role of interfaces in the evolution of the vortex state in these superlattices (and the associated electrostatic and elastic boundary conditions they produce) has remained unclear. Here, the toroidal state, arranged in arrays of alternating clockwise/counterclockwise polar vortices, in a confined SrTiO3 /PbTiO3 /SrTiO3 trilayer is investigated. By utilizing a combination of transmission electron microscopy, synchrotron-based X-ray diffraction, and phase-field modeling, the phase transition as a function of layer thickness (number of unit cells) demonstrates how the vortex state emerges from the ferroelectric state by varying the thickness of the confined PbTiO3 layer. Intriguingly, the vortex state arises at head-to-head domain boundaries in ferroelectric a1 /a2 twin structures. In turn, by varying the total number of PbTiO3 layers (moving from trilayer to superlattices), it is possible to manipulate the long-range interactions among multiple confined PbTiO3 layers to stabilize the vortex state. This work provides a new understanding of how the different energies work together to produce this exciting new state of matter and can contribute to the design of novel states and potential memory applications.

15.
Nat Nanotechnol ; 14(7): 705-711, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31133663

RESUMO

The urgent need for safer batteries is leading research to all-solid-state lithium-based cells. To achieve energy density comparable to liquid electrolyte-based cells, ultrathin and lightweight solid electrolytes with high ionic conductivity are desired. However, solid electrolytes with comparable thicknesses to commercial polymer electrolyte separators (~10 µm) used in liquid electrolytes remain challenging to make because of the increased risk of short-circuiting the battery. Here, we report on a polymer-polymer solid-state electrolyte design, demonstrated with an 8.6-µm-thick nanoporous polyimide (PI) film filled with polyethylene oxide/lithium bis(trifluoromethanesulfonyl)imide (PEO/LiTFSI) that can be used as a safe solid polymer electrolyte. The PI film is nonflammable and mechanically strong, preventing batteries from short-circuiting even after more than 1,000 h of cycling, and the vertical channels enhance the ionic conductivity (2.3 × 10-4 S cm-1 at 30 °C) of the infused polymer electrolyte. All-solid-state lithium-ion batteries fabricated with PI/PEO/LiTFSI solid electrolyte show good cycling performance (200 cycles at C/2 rate) at 60 °C and withstand abuse tests such as bending, cutting and nail penetration.

17.
Nat Commun ; 10(1): 1843, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015446

RESUMO

Understanding the breakdown mechanisms of polymer-based dielectrics is critical to achieving high-density energy storage. Here a comprehensive phase-field model is developed to investigate the electric, thermal, and mechanical effects in the breakdown process of polymer-based dielectrics. High-throughput simulations are performed for the P(VDF-HFP)-based nanocomposites filled with nanoparticles of different properties. Machine learning is conducted on the database from the high-throughput simulations to produce an analytical expression for the breakdown strength, which is verified by targeted experimental measurements and can be used to semiquantitatively predict the breakdown strength of the P(VDF-HFP)-based nanocomposites. The present work provides fundamental insights to the breakdown mechanisms of polymer nanocomposite dielectrics and establishes a powerful theoretical framework of materials design for optimizing their breakdown strength and thus maximizing their energy storage by screening suitable nanofillers. It can potentially be extended to optimize the performances of other types of materials such as thermoelectrics and solid electrolytes.

18.
Adv Mater ; 31(23): e1900875, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30977229

RESUMO

Next-generation microelectronics and electrical power systems call for high-energy-density dielectric polymeric materials that can operate efficiently under elevated temperatures. However, the currently available polymer dielectrics are limited to relatively low working temperatures. Here, the solution-processable polymer nanocomposites consisting of readily prepared Al2 O3 fillers with systematically varied morphologies including nanoparticles, nanowires, and nanoplates are reported. The field-dependent electrical conduction of the polymer nanocomposites at elevated temperatures is investigated. A strong dependence of the conduction behavior and breakdown strength of the polymer composites on the filler morphology is revealed experimentally and is further rationalized via computations. The polymer composites containing Al2 O3 nanoplates display a record capacitive performance, e.g., a discharged energy density of 3.31 J cm-3 and a charge-discharge efficiency of >90% measured at 450 MV m-1 and 150 °C, significantly outperforming the state-of-the-art dielectric polymers and nanocomposites that are typically prepared via tedious, low-yield approaches.

19.
Science ; 364(6437): 264-268, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-31000659

RESUMO

High-performance piezoelectrics benefit transducers and sensors in a variety of electromechanical applications. The materials with the highest piezoelectric charge coefficients (d 33) are relaxor-PbTiO3 crystals, which were discovered two decades ago. We successfully grew Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (Sm-PMN-PT) single crystals with even higher d 33 values ranging from 3400 to 4100 picocoulombs per newton, with variation below 20% over the as-grown crystal boule, exhibiting good property uniformity. We characterized the Sm-PMN-PT on the atomic scale with scanning transmission electron microscopy and made first-principles calculations to determine that the giant piezoelectric properties arise from the enhanced local structural heterogeneity introduced by Sm3+ dopants. Rare-earth doping is thus identified as a general strategy for introducing local structural heterogeneity in order to enhance the piezoelectricity of relaxor ferroelectric crystals.

20.
Nat Commun ; 10(1): 537, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30710079

RESUMO

Flexoelectricity is a universal electromechanical coupling effect whereby all dielectric materials polarise in response to strain gradients. In particular, nanoscale flexoelectricity promises exotic phenomena and functions, but reliable characterisation methods are required to unlock its potential. Here, we report anomalous mechanical control of quantum tunnelling that allows for characterising nanoscale flexoelectricity. By applying strain gradients with an atomic force microscope tip, we systematically polarise an ultrathin film of otherwise nonpolar SrTiO3, and simultaneously measure tunnel current across it. The measured tunnel current exhibits critical behaviour as a function of strain gradients, which manifests large modification of tunnel barrier profiles via flexoelectricity. Further analysis of this critical behaviour reveals significantly enhanced flexocoupling strength in ultrathin SrTiO3, compared to that in bulk, rendering flexoelectricity more potent at the nanoscale. Our study not only suggests possible applications exploiting dynamic mechanical control of quantum effect, but also paves the way to characterise nanoscale flexoelectricity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA