Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 4458, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575867

RESUMO

The use of anion redox reactions is gaining interest for increasing rechargeable capacities in alkaline ion batteries. Although anion redox coupling of S2- and (S2)2- through dimerization of S-S in sulfides have been studied and reported, an anion redox process through electron hole formation has not been investigated to the best of our knowledge. Here, we report an O3-NaCr2/3Ti1/3S2 cathode that delivers a high reversible capacity of ~186 mAh g-1 (0.95 Na) based on the cation and anion redox process. Various charge compensation mechanisms of the sulfur anionic redox process in layered NaCr2/3Ti1/3S2, which occur through the formation of disulfide-like species, the precipitation of elemental sulfur, S-S dimerization, and especially through the formation of electron holes, are investigated. Direct structural evidence for formation of electron holes and (S2)n- species with shortened S-S distances is obtained. These results provide valuable information for the development of materials based on the anionic redox reaction.

2.
Cell Biol Int ; 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31322778

RESUMO

Free fatty acid receptor G protein-coupled receptor 120 (GPR120) is highly expressed in macrophages and was reported to inhibit lipopolysaccharide (LPS)-stimulated cytokine expression. Under inflammation, macrophages exhibit striking functional changes, but changes in GPR120 expression and signaling are not known. In this study, the effects of LPS treatment on macrophage GPR120 expression and activation were investigated. The results showed that LPS inhibited GPR120 expression in mouse macrophage cell line Ana-1 cells. Moreover, LPS treatment inhibited GPR120 expression in mouse alveolar macrophages both in vitro and in vivo. The inhibitory effect of LPS on GPR120 expression was blocked by Toll-like receptor 4 (TLR4) inhibitor TAK242 and p38 mitogen-activated protein kinase inhibitor LY222820, but not by ERK1/2 inhibitor U0126 and c-Jun N-terminal kinase inhibitor SP600125. LPS-induced inhibition of GPR120 expression was not attenuated by GPR120 agonists TUG891 and GW9508. TUG891 inhibited the phagocytosis of alveolar macrophages, and LPS treatment counteracted the effects of TUG891 on phagocytosis. These results indicate that pretreatment with LPS inhibits GPR120 expression and activation in macrophages. It is suggested that LPS-induced inhibition of GPR120 expression is a reaction enhancing the LPS-induced pro-inflammatory response of macrophages.

3.
J Clin Oncol ; 37(25): 2235-2245, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31194613

RESUMO

PURPOSE: To assess the benefits of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors as neoadjuvant/adjuvant therapies in locally advanced EGFR mutation-positive non-small-cell lung cancer. PATIENTS AND METHODS: This was a multicenter (17 centers in China), open-label, phase II, randomized controlled trial of erlotinib versus gemcitabine plus cisplatin (GC chemotherapy) as neoadjuvant/adjuvant therapy in patients with stage IIIA-N2 non-small-cell lung cancer with EGFR mutations in exon 19 or 21 (EMERGING). Patients received erlotinib 150 mg/d (neoadjuvant therapy, 42 days; adjuvant therapy, up to 12 months) or gemcitabine 1,250 mg/m2 plus cisplatin 75 mg/m2 (neoadjuvant therapy, two cycles; adjuvant therapy, up to two cycles). Assessments were performed at 6 weeks and every 3 months postsurgery. The primary end point was objective response rate (ORR) by Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1; secondary end points were pathologic complete response, progression-free survival (PFS), overall survival, safety, and tolerability. RESULTS: Of 386 patients screened, 72 were randomly assigned to treatment (intention-to-treat population), and 71 were included in the safety analysis (one patient withdrew before treatment). The ORR for neoadjuvant erlotinib versus GC chemotherapy was 54.1% versus 34.3% (odds ratio, 2.26; 95% CI, 0.87 to 5.84; P = .092). No pathologic complete response was identified in either arm. Three (9.7%) of 31 patients and zero of 23 patients in the erlotinib and GC chemotherapy arms, respectively, had a major pathologic response. Median PFS was significantly longer with erlotinib (21.5 months) versus GC chemotherapy (11.4 months; hazard ratio, 0.39; 95% CI, 0.23 to 0.67; P < .001). Observed adverse events reflected those most commonly seen with the two treatments. CONCLUSION: The primary end point of ORR with 42 days of neoadjuvant erlotinib was not met, but the secondary end point PFS was significantly improved.

4.
J Asian Nat Prod Res ; : 1-8, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31154865

RESUMO

Three new monoterpenoid indole alkaloids, kopsiaofficines A-D (1-3), were isolated from the 95% EtOH extract of the aerial parts of Kopsia officinalis. Their structures were established on the basis of spectroscopic data. The isolated alkaloids were tested in vitro for cytotoxic activity against seven lung cancer cell lines. Consequently, alkaloids 1 and 3 exhibited some cytotoxic activities against all the tested tumor cell lines with IC50 values less than 20 µM.

5.
J Phys Chem A ; 123(26): 5472-5490, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31241939

RESUMO

We investigate the gas-phase photochemistry of the enolone tautomer of acetylacetone (pentane-2,4-dione) following S2(ππ*) ← S0 excitation at λ = 266 and 248 nm, using three complementary time-resolved spectroscopic methods. Contrary to earlier reports, which claimed to study one-photon excitation of acetylacetone and found OH and CH3 as the only important gas-phase products, we detect 15 unique primary photoproducts and demonstrate that five of them, including OH and CH3, arise solely by multiphoton excitation. We assign the one-photon products to six photochemical channels and show that the most significant pathway is phototautomerization to the diketone form, which is likely an intermediate in several of the other product channels. Furthermore, we measure the equilibrium constant of the tautomerization of the enolone to diketone on S0 from 320 to 600 K and extract Δ H = 4.1 ± 0.3 kcal·mol-1 and Δ S = 6.8 ± 0.5 cal·mol-1·K-1 using a van't Hoff analysis. We correct the C-OH bond dissociation energy in acetylacetone, previously determined as 90 kcal·mol-1 by theory and experiment, to a new value of 121.7 kcal·mol-1. Our experiments and electronic structure calculations provide evidence that some of the product channels, including phototautomerization, occur on S0, while others likely occur on excited triplet surfaces. Although the large oscillator strength of the S2 ← S0 transition results from the (ππ*) excitation of the C═C-C═O backbone, similar to conjugated polyenes, the participation of triplets in the dissociation pathways of acetylacetone appears to have more in common with ketone photochemistry.

6.
Proc Natl Acad Sci U S A ; 116(24): 11737-11746, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31123145

RESUMO

Asparaginyl endopeptidases (AEPs) are cysteine proteases which break Asx (Asn/Asp)-Xaa bonds in acidic conditions. Despite sharing a conserved overall structure with AEPs, certain plant enzymes such as butelase 1 act as a peptide asparaginyl ligase (PAL) and catalyze Asx-Xaa bond formation in near-neutral conditions. PALs also serve as macrocyclases in the biosynthesis of cyclic peptides. Here, we address the question of how a PAL can function as a ligase rather than a protease. Based on sequence homology of butelase 1, we identified AEPs and PALs from the cyclic peptide-producing plants Viola yedoensis (Vy) and Viola canadensis (Vc) of the Violaceae family. Using a crystal structure of a PAL obtained at 2.4-Å resolution coupled to mutagenesis studies, we discovered ligase-activity determinants flanking the S1 site, namely LAD1 and LAD2 located around the S2 and S1' sites, respectively, which modulate ligase activity by controlling the accessibility of water or amine nucleophile to the S-ester intermediate. Recombinantly expressed VyPAL1-3, predicted to be PALs, were confirmed to be ligases by functional studies. In addition, mutagenesis studies on VyPAL1-3, VyAEP1, and VcAEP supported our prediction that LAD1 and LAD2 are important for ligase activity. In particular, mutagenesis targeting LAD2 selectively enhanced the ligase activity of VyPAL3 and converted the protease VcAEP into a ligase. The definition of structural determinants required for ligation activity of the asparaginyl ligases presented here will facilitate genomic identification of PALs and engineering of AEPs into PALs.

7.
Adv Mater ; 31(28): e1900528, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31116896

RESUMO

Integrating thermodynamically favorable ethanol reforming reactions with hybrid water electrolysis will allow room-temperature production of high-value organic products and decoupled hydrogen evolution. However, electrochemical reforming of ethanol has not received adequate attention due to its low catalytic efficiency and poor selectivity, which are caused by the multiple groups and chemical bonds of ethanol. In addition to the thermodynamic properties affected by the electronic structure of the catalyst, the dynamics of molecule/ion dynamics in electrolytes also play a significant role in the efficiency of a catalyst. The relatively large size and viscosity of the ethanol molecule necessitates large channels for molecule/ion transport through catalysts. Perforated CoNi hydroxide nanosheets are proposed as a model catalyst to synergistically regulate the dynamics of molecules and electronic structures. Molecular dynamics simulations directly reveal that these nanosheets can act as a "dam" to enrich ethanol molecules and facilitate permeation through the nanopores. Additionally, the charge transfer behavior of heteroatoms modifies the local charge density to promote molecular chemisorption. As expected, the perforated nanosheets exhibit a small potential (1.39 V) and high Faradaic efficiency for the conversion of ethanol into acetic acid. Moreover, the concept in this work provides new perspectives for exploring other molecular catalysts.

8.
Nature ; 569(7754): 99-103, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043727

RESUMO

Since their discovery in 19601, metallic glasses based on a wide range of elements have been developed2. However, the theoretical prediction of glass-forming compositions is challenging and the discovery of alloys with specific properties has so far largely been the result of trial and error3-8. Bulk metallic glasses can exhibit strength and elasticity surpassing those of conventional structural alloys9-11, but the mechanical properties of these glasses are critically dependent on the glass transition temperature. At temperatures approaching the glass transition, bulk metallic glasses undergo plastic flow, resulting in a substantial decrease in quasi-static strength. Bulk metallic glasses with glass transition temperatures greater than 1,000 kelvin have been developed, but the supercooled liquid region (between the glass transition and the crystallization temperature) is narrow, resulting in very little thermoplastic formability, which limits their practical applicability. Here we report the design of iridium/nickel/tantalum metallic glasses (and others also containing boron) with a glass transition temperature of up to 1,162 kelvin and a supercooled liquid region of 136 kelvin that is wider than that of most existing metallic glasses12. Our Ir-Ni-Ta-(B) glasses exhibit high strength at high temperatures compared to existing alloys: 3.7 gigapascals at 1,000 kelvin9,13. Their glass-forming ability is characterized by a critical casting thickness of three millimetres, suggesting that small-scale components for applications at high temperatures or in harsh environments can readily be obtained by thermoplastic forming14. To identify alloys of interest, we used a simplified combinatorial approach6-8 harnessing a previously reported correlation between glass-forming ability and electrical resistivity15-17. This method is non-destructive, allowing subsequent testing of a range of physical properties on the same library of samples. The practicality of our design and discovery approach, exemplified by the identification of high-strength, high-temperature bulk metallic glasses, bodes well for enabling the discovery of other glassy alloys with exciting properties.

9.
Proc Natl Acad Sci U S A ; 116(19): 9558-9567, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31000599

RESUMO

Chikungunya virus (CHIKV) is transmitted to humans through mosquitoes and causes Chikungunya fever. Nonstructural protein 2 (nsP2) exhibits the protease and RNA helicase activities that are required for viral RNA replication and transcription. Unlike for the C-terminal protease, the structure of the N-terminal RNA helicase (nsP2h) has not been determined. Here, we report the crystal structure of the nsP2h bound to the conserved 3'-end 14 nucleotides of the CHIKV genome and the nonhydrolyzable transition-state nucleotide analog ADP-AlF4 Overall, the structural analysis revealed that nsP2h adopts a uniquely folded N-terminal domain followed by a superfamily 1 RNA helicase fold. The conserved helicase motifs establish polar contacts with the RNA backbone. There are three hydrophobic residues (Y161, F164, and F287) which form stacking interactions with RNA bases and thereby bend the RNA backbone. An F287A substitution that disrupted these stacking interactions increased the basal ATPase activity but decreased the RNA binding affinity. Furthermore, the F287A substitution reduced viral infectivity by attenuating subgenomic RNA synthesis. Replication of the mutant virus was restored by pseudoreversion (A287V) or adaptive mutations in the RecA2 helicase domain (T358S or V410I). Y161A and/or F164A substitutions, which were designed to disrupt the interactions with the RNA molecule, did not affect the ATPase activity but completely abolished the replication and transcription of viral RNA and the infectivity of CHIKV. Our study sheds light on the roles of the RNA helicase region in viral replication and provides insights that might be applicable to alphaviruses and other RNA viruses in general.

10.
Redox Biol ; 24: 101168, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30925293

RESUMO

Reactive oxygen species (ROS) induce different cellular stress responses but can also mediate cellular signaling. Augmented levels of ROS are associated with aging, cancer as well as various metabolic and neurological disorders. ROS can also affect the efficacy and adverse effects of drugs. Although proteins are key mediators of most ROS effects, direct studies of ROS-modulated-protein function in the cellular context are very challenging. Therefore the understanding of specific roles of different proteins in cellular ROS responses is still relatively rudimentary. In the present work we show that Mass Spectrometry-Cellular Thermal Shift Assay (MS-CETSA) can directly monitor ROS and redox modulations of protein structure at the proteome level. By altering ROS levels in cultured human hepatocellular carcinoma cell lysates and intact cells, we detected CETSA responses in many proteins known to be redox sensitive, and also revealed novel candidate ROS sensitive proteins. Studies in intact cells treated with hydrogen peroxide and sulfasalazine, a ROS modulating drug, identified not only proteins that are directly modified, but also proteins reporting on downstream cellular effects. Comprehensive changes are seen on rate-limiting proteins regulating key cellular processes, including known redox control systems, protein degradation, epigenetic control and protein translational processes. Interestingly, concerted shifts on ATP-binding proteins revealed redox-induced modulation of ATP levels, which likely control many cellular processes. Collectively, these studies establish CETSA as a novel method for cellular studies of redox modulations of proteins, which implicated in a wide range of processes and for the discovery of CETSA-based biomarkers reporting on the efficacy as well as adverse effects of drugs.

12.
Technol Cancer Res Treat ; 17: 1533033818811143, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30482097

RESUMO

Osteosarcoma is a highly malignant bone tumor. However, due to the high complexity of the occurrence and metastasis of osteosarcoma, the exact mechanism promoting its development and progression remains to be elucidated. This study highlights the causal link between solute carrier family 25 member 22 (SLC25A22) and the development, progression, and metastasis of osteosarcoma. SLC25A22 is upregulated in human osteosarcoma and predicts a poor prognosis. The upregulation of SLC25A22 in osteosarcoma tissues was significantly associated with cell proliferation, invasion, and metastasis. Studies of functional gain (overexpression) and loss (knockdown) showed that SLC25A22 significantly increases the ability of osteosarcoma cells to proliferate, as well as invade and metastasize in vitro. At the same time, the expression of SLC25A22 promoted the progression of the cellcycle of osteosarcoma cell lines and inhibited the apoptosis of osteosarcoma cells. Analysis using a mouse xenograft model showed that xenografts of SLC25A22 stable overexpressing osteosarcoma cells had a significant increase in tumor volume and weight compared to the control group. Lung metastasis models in mice showed that expression of SLC25A22 promoted lung metastasis of osteosarcoma in vivo. Furthermore, SLC25A22 inhibited phosphatase and tensin homolog expression and increased phosphorylation of protein kinase b (Akt) and Focal Adhesion Kinase (FAK) in the phosphatase and tensin homolog signaling pathway. In summary, SLC25A22 is highly expressed in osteosarcoma, promoting osteosarcoma cell proliferation and invasion by inhibiting the phosphatase and tensin homolog signaling pathway.

13.
ACS Nano ; 12(11): 11161-11168, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30371049

RESUMO

Vertically stacked two-dimensional (2D) heterostructures composed of 2D semiconductors have attracted great attention. Most of these include hexagonal boron nitride (h-BN) as either a substrate, an encapsulant, or a tunnel barrier. However, reliable synthesis of large-area and epitaxial 2D heterostructures incorporating BN remains challenging. Here, we demonstrate the epitaxial growth of nominal monolayer (ML) MoSe2 on h-BN/Rh(111) by molecular beam epitaxy, where the MoSe2/h-BN layer system can be transferred from the growth substrate onto SiO2. The valence band structure of ML MoSe2/h-BN/Rh(111) revealed by photoemission electron momentum microscopy ( kPEEM) shows that the valence band maximum located at the K point is 1.33 eV below the Fermi level ( EF), whereas the energy difference between K and Γ points is determined to be 0.23 eV, demonstrating that the electronic properties, such as the direct band gap and the effective mass of ML MoSe2, are well preserved in MoSe2/h-BN heterostructures.

14.
Nat Commun ; 9(1): 4343, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341291

RESUMO

Methanol is a benchmark for understanding tropospheric oxidation, but is underpredicted by up to 100% in atmospheric models. Recent work has suggested this discrepancy can be reconciled by the rapid reaction of hydroxyl and methylperoxy radicals with a methanol branching fraction of 30%. However, for fractions below 15%, methanol underprediction is exacerbated. Theoretical investigations of this reaction are challenging because of intersystem crossing between singlet and triplet surfaces - ∼45% of reaction products are obtained via intersystem crossing of a pre-product complex - which demands experimental determinations of product branching. Here we report direct measurements of methanol from this reaction. A branching fraction below 15% is established, consequently highlighting a large gap in the understanding of global methanol sources. These results support the recent high-level theoretical work and substantially reduce its uncertainties.

15.
Phys Chem Chem Phys ; 20(16): 10815-10825, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29417107

RESUMO

Formation of the key general radical chain carriers, ˙OH and HO2˙, during pulsed-photolytic ˙Cl-initiated oxidation of tetrahydropyran and cyclohexane are measured with time-resolved infrared absorption in a temperature-controlled Herriott multipass cell in the temperature range of 500-750 K at 20 Torr. The experiments show two distinct timescales for HO2˙ and ˙OH formation in the oxidation of both fuels. Analysis of the timescales reveals striking differences in behavior between the two fuels. In both cyclohexane and tetrahydropyran oxidation, a faster timescale is strongly related to the "well-skipping" (˙R + O2 → alkene + HO2˙ or cyclic ether + ˙OH) mechanism and is expected to have, at most, a weak temperature dependence. Indeed, the fast HO2˙ formation timescale is nearly temperature independent both for cyclohexyl + O2 and for tetrahydropyranyl + O2 below 700 K. A slower HO2˙ formation timescale in cyclohexane oxidation is shown to be linked to the sequential ˙R + O2 → ROO˙ → alkene + HO2˙ pathway, and displays a strong temperature dependence mainly from the final step (with energy barrier ∼32.5 kcal mol-1). In contrast, the slower HO2˙ formation timescale in tetrahydropyran oxidation is surprisingly temperature insensitive across all measured temperatures. Although the ˙OH formation timescales in tetrahydropyran oxidation show a temperature dependence similar to the cyclohexane oxidation, the temperature dependence of ˙OH yield is opposite in both cases. This significant difference of HO2˙ formation kinetics and ˙OH formation yield for the tetrahydropyran oxidation can arise from contributions related to ring-opening pathways in the tetrahydropyranyl + O2 system that compete with the typical ˙R + O2 reaction scheme. This comparison of two similar fuels demonstrates the consequences of differing chemical mechanisms on ˙OH and HO2˙ formation and shows that they can be highlighted by analysis of the eigenvalues of a system of simplified kinetic equations for the alkylperoxy-centered ˙R + O2 reaction pathways. We suggest that such analysis can be more generally applied to complex or poorly known oxidation systems.

16.
Biosci Rep ; 38(1)2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29089464

RESUMO

The aim of the present study was to investigate the correlation of enhancer of Zeste homolog 2 (EZH2) and SET and MYND domain containing 3 (SMYD3) gene polymorphisms with breast cancer susceptibility and prognosis. A total of 712 patients with breast cancer and 783 healthy individuals were selected. Normal breast epithelial cells MCF-10A and breast cancer cells MCF-7, MDA-MB-231, T47D, and Bcap-37 were cultured. Polymerase chain reaction (PCR)-restriction fragment length polymorphism method was applied for genotyping. Reverse-transcription quantitative PCR (RT-qPCR) and Western blotting were used to examine EZH2 and SMYD3 expression in breast cancer tissues and cells. The risk factors and prognostic factors for breast cancer were estimated. The C allele of EZH2 rs12670401 (odds ratio (OR) =1.255, 95% confidence interval (95% CI): 1.085-1.452), T allele of EZH2 rs6464926 (OR =1.240, 95% CI: 1.071-1.435), and three alleles of SMYD3 variable number of tandem repeats (VNTRs) (OR =1.305, 95% CI: 1.097-1.552) could increase susceptibility to breast cancer. Combined genotypes of EZH2 rs12670401 (TC + CC) and EZH2 rs6464926 (CT + TT) were associated with breast cancer susceptibility. Breast cancer tissues had higher EZH2 and SMYD3 expression. EZH2 rs12670401, EZH2 rs6464926, age of menarche, and menopausal status were associated with breast cancer susceptibility. Patients with TT genotype of EZH2 rs12670401 or with CC genotype of EZH2 rs6464926 had higher overall survival (OS). EZH2 rs12670401, EZH2 rs6464926, and clinical staging were independent prognostic factors for breast cancer. SMYD3 VNTR polymorphism exhibited no association with susceptibility and prognosis. EZH2 rs12670401 and rs6464926 polymorphisms, EZH2 and SMYD3 expression, clinical staging, lymph node metastasis, human epidermal growth factor receptor-2 (HER2) status, and metastasis may be correlated with breast cancer susceptibility and prognosis.


Assuntos
Neoplasias da Mama/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Predisposição Genética para Doença , Histona-Lisina N-Metiltransferase/genética , Adulto , Idoso , Alelos , Neoplasias da Mama/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética , Genótipo , Humanos , Metástase Linfática , Células MCF-7 , Pessoa de Meia-Idade , Repetições Minissatélites/genética , Estadiamento de Neoplasias , Polimorfismo de Fragmento de Restrição/genética , Prognóstico , Receptor ErbB-2/genética
17.
Sci Rep ; 7(1): 8346, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827701

RESUMO

Epidermal growth factor receptor (EGFR) mutations predict better outcomes with EGFR tyrosine kinase inhibitors in patients with non-small cell lung cancer (NSCLC). Most common activating mutations include in-frame deletion in exon 19 and L858R substitution in exon 21, which account for >90% of all EGFR mutations in NSCLC. In this study, a PCR-GoldMag lateral flow assay (PCR-GoldMag LFA) was developed for the visual detection of delE746-A750 and L858R of EGFR mutations. Forty formalin-fixed paraffin-embedded (FFPE) tissue samples of NSCLC patients were analyzed using PCR-GoldMag LFA system and verified by direct sequencing and TaqMan-PCR detection methods. Results showed that EGFR mutations were detected in 34 cases among the 40 samples (85%) by PCR-GoldMag LFA method. Among the 34 cases, 5 cases were simultaneously detected with delE746-A750 in exon 19 and L858R mutation in exon 21. Compared with sequencing, only 4 samples were detected as delE746-A750, which revealed higher sensitivity of PCR-GoldMag LFA detection method than direct sequencing. TaqMan-PCR method verified the L858R mutation and was in 100% agreement with our method. These results indicated that our method has obvious advantages to analyze clinical samples and offers a more sensitive alternative to direct sequencing for the detection of EGFR mutations.

18.
Structure ; 25(8): 1242-1250.e3, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28689970

RESUMO

The NS2B-NS3 viral protease is an attractive drug target against Zika virus (ZIKV) due to its importance in viral replication and maturation. Here we report the crystal structure of protease in complex with a dipeptide inhibitor, Acyl-KR-aldehyde (compound 1). The aldehyde moiety forms a covalent bond with the catalytic Ser135 of NS3. The Arg and Lys residues in the inhibitor occupy the S1 and S2 sites of the protease, respectively. Nuclear magnetic resonance studies demonstrate that the complex is in the closed conformation in solution. The chemical environment of residues surrounding the active site is sensitive to the bound inhibitor as demonstrated by the comparison with two other non-covalent dipeptides, Acyl-K-Agmatine (compound 2) and Acyl-KR-COOH (compound 3). Removing the aldehyde moiety in 1 converts the binding mode from a slow to a fast exchange regime. The structural dynamics information obtained in this study will guide future drug discovery against ZIKV and other flaviviruses.


Assuntos
Antivirais/farmacologia , Dipeptídeos/farmacologia , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/química , Antivirais/química , Domínio Catalítico , Dipeptídeos/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Ligação Proteica , RNA Helicases/química , RNA Helicases/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Zika virus/enzimologia
19.
Faraday Discuss ; 200: 313-330, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28604897

RESUMO

The reactions of Criegee intermediates with NO2 have been proposed as a potentially significant source of the important nighttime oxidant NO3, particularly in urban environments where concentrations of ozone, alkenes and NOx are high. However, previous efforts to characterize the yield of NO3 from these reactions have been inconclusive, with many studies failing to detect NO3. In the present work, the reactions of formaldehyde oxide (CH2OO) and acetaldehyde oxide (CH3CHOO) with NO2 are revisited to further explore the product formation over a pressure range of 4-40 Torr. NO3 is not observed; however, temporally resolved and [NO2]-dependent signal is observed at the mass of the Criegee-NO2 adduct for both formaldehyde- and acetaldehyde-oxide systems, and the structure of this adduct is explored through ab initio calculations. The atmospheric implications of the title reaction are investigated through global modelling.

20.
ACS Nano ; 11(6): 6355-6361, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28530829

RESUMO

Transition metal dichalcogenides (TMDCs), together with other two-dimensional (2D) materials, have attracted great interest due to the unique optical and electrical properties of atomically thin layers. In order to fulfill their potential, developing large-area growth and understanding the properties of TMDCs have become crucial. Here, we have used molecular beam epitaxy (MBE) to grow atomically thin MoSe2 on GaAs(111)B. No intermediate compounds were detected at the interface of as-grown films. Careful optimization of the growth temperature can result in the growth of highly aligned films with only two possible crystalline orientations due to broken inversion symmetry. As-grown films can be transferred onto insulating substrates, allowing their optical and electrical properties to be probed. By using polymer electrolyte gating, we have achieved ambipolar transport in MBE-grown MoSe2. The temperature-dependent transport characteristics can be explained by the 2D variable-range hopping (2D-VRH) model, indicating that the transport is strongly limited by the disorder in the film.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA