Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Appl Opt ; 58(24): 6611-6617, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31503592


An electrically controlled arc-electrode liquid-crystal microlens array (AE-LCMLA), with tuning and swing focus, is proposed, which can be utilized to replace the traditional mechanically controlled microlenses and also cooperate with photosensitive arrays to solve the problems of measuring and further adjusting a strong distortion wavefront. The top patterned electrode of a single LC microlens is composed of three arc-electrodes distributed symmetrically around a central microhole for constructing the key controlling structures of the LC cavity in the AE-LCMLA. All the arc-electrodes are individually controlled, and then the focal spot of each microlens can be moved freely in a three-dimensional fashion including along the optical axial direction and over the focal plane by simply adjusting the driving signal voltage applied over each arc-electrode, independently. The featured performances of the AE-LCMLA in a wavelength range of ∼501-561 nm are the driving signal voltage being relatively low (less than ∼11 Vrms), the focal length tuning range being from ∼2.54 mm to ∼3.50 mm, the maximum focus swing distance being ∼52.92 µm, and the focus swing ratio K being ∼20‰.

Opt Express ; 27(16): 23422-23431, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510618


A new type of electrically controlled liquid-crystal microlens matrix (EC-LCMM) with a nested electrode array for efficiently tuning and swinging focus, which means that the focus position can be adjusted in three dimensions, is proposed. The EC-LCMM is constructed by a 10 × 10 arrayed annular-sector-shaped aluminum electrode with a central microhole of 140µm diameter and three annular-sectors of 210µm external diameter and the period length of 280µm. To the arrangement of the patterned electrode, both the 10 × 10 LC microlens array based on the annular-sector-shaped aluminum electrode and the 9 × 9 LC microlens array based on an arrayed quasi-quadrilateral-ring-shaped electrode can be obtained. The 9 × 9 LC microlens array is formed by matching adjacent four annular-sector-shaped sub-electrodes in the 10 × 10 LC microlenses. The developed EC-LCMM can be used to electrically tune focus along the optical axis and also swing focus over a focal plane selected. The typical performances include: electrically tunable focusing in a driving voltage range of 3~7Vrms, the focal length in a range of 2~0.6mm, and the maximum focus swing distance being 16µm. For effectively describing the focus swing efficiency, the parameters of SF and SA are defined, which are the ratios between the focus swinging distance and the current focal length along the optical axis, and between the focus swinging extent and the external diameter of a single annular-sector-shaped aluminum electrode, respectively. The SF and SA of the EC-LCMM are ~16‰ and ~7.6%, respectively. It can be expected that the complex wavefront can be more efficiently measured and adjusted according to the EC-LCMM-based Shack-Hartmann wavefront measuring and adjusting architecture.

Micromachines (Basel) ; 10(2)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791375


A new dual-mode liquid-crystal (LC) micro-device constructed by incorporating a Fabry⁻Perot (FP) cavity and an arrayed LC micro-lens for performing simultaneous electrically adjusted filtering and zooming in infrared wavelength range is presented in this paper. The main micro-structure is a micro-cavity consisting of two parallel zinc selenide (ZnSe) substrates that are pre-coated with ~20-nm aluminum (Al) layers which served as their high-reflection films and electrodes. In particular, the top electrode of the device is patterned by 44 × 38 circular micro-holes of 120 µm diameter, which also means a 44 × 38 micro-lens array. The micro-cavity with a typical depth of ~12 µm is fully filled by LC materials. The experimental results show that the spectral component with needed frequency or wavelength can be selected effectively from incident micro-beams, and both the transmission spectrum and the point spread function can be adjusted simultaneously by simply varying the root-mean-square value of the signal voltage applied, so as to demonstrate a closely correlated feature of filtering and zooming. In addition, the maximum transmittance is already up to ~20% according the peak-to-valley value of the spectral transmittance curves, which exhibits nearly twice the increment compared with that of the ordinary LC-FP filtering without micro-lenses.

Opt Express ; 26(4): 4035-4049, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29475259


Light-field imaging is a crucial and straightforward way of measuring and analyzing surrounding light worlds. In this paper, a dual-polarized light-field imaging micro-system based on a twisted nematic liquid-crystal microlens array (TN-LCMLA) for direct three-dimensional (3D) observation is fabricated and demonstrated. The prototyped camera has been constructed by integrating a TN-LCMLA with a common CMOS sensor array. By switching the working state of the TN-LCMLA, two orthogonally polarized light-field images can be remapped through the functioned imaging sensors. The imaging micro-system in conjunction with the electric-optical microstructure can be used to perform polarization and light-field imaging, simultaneously. Compared with conventional plenoptic cameras using liquid-crystal microlens array, the polarization-independent light-field images with a high image quality can be obtained in the arbitrary polarization state selected. We experimentally demonstrate characters including a relatively wide operation range in the manipulation of incident beams and the multiple imaging modes, such as conventional two-dimensional imaging, light-field imaging, and polarization imaging. Considering the obvious features of the TN-LCMLA, such as very low power consumption, providing multiple imaging modes mentioned, simple and low-cost manufacturing, the imaging micro-system integrated with this kind of liquid-crystal microstructure driven electrically presents the potential capability of directly observing a 3D object in typical scattering media.