Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 785
Filtrar
1.
J Pharm Biomed Anal ; 177: 112868, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31539713

RESUMO

Traditional Chinese Medicine Injection (TCMI) was restricted due to the batch-to-batch variability caused by the variable compositions of botanical raw materials and complexities of the current manufacturing process. To evaluate and control the quality of Kudiezi Injection (KDZI), a comprehensive and practical method based on multidimensional chromatographic fingerprint associated with multivariate statistical analysis was proposed. The multidimensional chromatographic fingerprint was established by integrating three kinds of chromatographic fingerprints, including High Performance Liquid Chromatography-Ultraviolet spectrum (HPLC-UV), Gas Chromatography-Mass Spectrometer (GC-MS) and High performance ion-exchange chromatography (HPIEC), which were used to detect flavones, nucleosides, organic acids, amino acids and saccharides in KDZI. In addition, four main multivariate statistical analyses were compared to assess the batch-to-batch consistency of samples. Results showed that the cosine method, which has been widely used in the quality evaluation of TCM, failed to distinguish the differences among batches based on neither chromatographic peaks' area nor contents information. t-test and Bayes' theorem could reveal the content difference among batches, while hierarchical clustering analysis could differentiate KDZI batches, and Luteolin-7-O-ß-D-glucuronopyranoside, Tau, Ser, guanine and allose were the main indicators. In conclusion, multidimensional chromatographic fingerprints could reflect the quality information of KDZI comprehensively and hierarchical clustering analysis was suitable to identify the differences among batches. This could provide an integrated method for consistency evaluation of TCMI, process improvement of TCMI and solving similar problems in TCMI.

2.
BMC Neurol ; 19(1): 291, 2019 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-31735164

RESUMO

BACKGROUND: Mutations of cyclooxygenase gene (COX gene) may increase the susceptibility of ischemic stroke. We investigated five variants (rs5788, rs1330344, rs3842788, rs20417, and rs689466) of two COX genes in order to explaining the association between these polymorphisms and we also investigated the association between these variants and ischemic stroke risk to determine whether gene-gene interaction between these genes increases the susceptibility of ischemic stroke or its subtypes. METHODS: A total of 1981 study subjects (1078 cases and 903 control subjects) were recruited. The interaction of multiple factors was investigated using Multifactor Dimensionality Reduction. The additive effect of single nucleotide polymorphisms on ischemic stroke or its subtypes were analyzed by multiple factor logistic regression. RESULTS: At COX-1(rs1330344), AA genotype carriers had a lower susceptibility of ischemic stroke (OR = 0.657, 95%CI = 0.437-0.988, P = 0.044), and A allele carriers had a lower susceptibility of ischemic stroke (OR = 0.812, 95%CI = 0.657-0.978, P = 0.029). At COX-1(rs3842788), AA genotype carriers had a higher susceptibility of ischemic stroke (OR = 5.203, 95% CI = 1.519-5.159, P = 0.016). At COX-2 (rs689466), AA genotype carriers had a higher susceptibility of large-artery atherosclerosis (OR = 1.404, 95% CI = 1.019-1.934, P = 0.038). COX-1(rs1330344, rs3842788) and COX-2 rs689466 interacted in SVO, but had no additive effect with ischemic stroke and other subtypes. CONCLUSIONS: At rs1330344, AA genotype may reduce the susceptibility of ischemic stroke. At rs3842788, AA genotype may increase the susceptibility of ischemic stroke. At rs689466, AA genotype may increase the susceptibility of large-artery atherosclerosis (LAA). COX - 1(rs1330344, rs3842788) and COX-2 rs689466 interacted in small vessel occlusion (SVO), but had no additive effect with ischemic stroke and other subtypes.

3.
J Exp Med ; 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757866

RESUMO

Systemic sclerosis (SSc; scleroderma) is a multisystem fibrotic disease. The mammalian cleavage factor I 25-kD subunit (CFIm25; encoded by NUDT21) is a key regulator of alternative polyadenylation, and its depletion causes predominantly 3'UTR shortening through loss of stimulation of distal polyadenylation sites. A shortened 3'UTR will often lack microRNA target sites, resulting in increased mRNA translation due to evasion of microRNA-mediated repression. Herein, we report that CFlm25 is downregulated in SSc skin, primary dermal fibroblasts, and two murine models of dermal fibrosis. Knockdown of CFIm25 in normal skin fibroblasts is sufficient to promote the 3'UTR shortening of key TGFß-regulated fibrotic genes and enhance their protein expression. Moreover, several of these fibrotic transcripts show 3'UTR shortening in SSc skin. Finally, mice with CFIm25 deletion in fibroblasts show exaggerated skin fibrosis upon bleomycin treatment, and CFIm25 restoration attenuates bleomycin-induced skin fibrosis. Overall, our data link this novel RNA-processing mechanism to dermal fibrosis and SSc pathogenesis.

4.
Brain Behav Immun ; 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31669519

RESUMO

The vicious cycle between the chronicactivationofmicroglia and dopamine neurons degeneration is linked with the progression of Parkinson's disease (PD). Targeting microglialactivationhas proven to be a viable option to develop a disease-modified therapy for PD. Galectin-1, which has been reported to have an anti-neuroinflammation effect was used in the present study to evaluate its therapeutic effects on microglia activation and neuronal degeneration in Parkinson's disease model. It was found that galectin-1 attenuated the inflammatory insult and the apoptosis of SK-N-SH human neuroblastoma cells from conditioned medium of activated microglia induced by Lipopolysaccharides (LPS). Nonetheless, galectin-1 administration (0.5 mg/kg) inhibited the microglia activation, improved the motor deficits in PD mice model induced by MPTP (25 mg/kg weight of mouse, i.p.) and prevented the degeneration of dopaminergic neurons in the substantia nigra. Administration of galectin-1 resulted in p38 and ERK1/2 dephosphorylation followed by IκB/NFκB signaling pathway inhibition. Galectin-1 significantly decreased the secretion of pro-inflammatory cytokines, including interleukin (IL)-1ß, tumor necrosis factor-α (TNF-α), and protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). The protective effects and modulation of the MAPK/IκB/NFκB signaling pathway were abolished with ß-D-galactose which blocked the carbohydrate-recognition domain of galectin-1. The present study demonstrated that galectin-1 inhibited microglia activation and ameliorated neurodegenerative process in PD model by modulating MAPK/IκB/NFκB axis through its carbohydrate-recognition domain.

5.
Cochrane Database Syst Rev ; 2019(11)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31710397

RESUMO

BACKGROUND: Although vascular dementia is the second most common cause of dementia globally, evidence-based treatments are still lacking. Cerebrolysin is a porcine brain-derived preparation that is said to have neurotrophic and neuroprotective activity. In many parts of the world Cerebrolysin, given as a series of daily intravenous infusions, is used as a potential intervention for vascular dementia. A previous Cochrane Review on Cerebrolysin in vascular dementia yielded inconsistent results. We wished to update the review to add new studies from the international literature and employ contemporary methods for appraising the strength of the evidence. This is the first update of a review first published in 2013. OBJECTIVES: Primary: to assess the effect of Cerebrolysin on cognitive function, global function, and all-cause mortality in people living with vascular dementia. Secondary: to assess the adverse effects of Cerebrolysin and to assess the effect of Cerebrolysin on quality of life and caregiver burden. SEARCH METHODS: We searched ALOIS, MEDLINE, Embase, PsycINFO, CINAHL, ISI Web of Knowledge, LILACS, the Cochrane Library, ClinicalTrials.gov, and the WHO ICTRP on 16 June 2017, 9 May 2018, and 9 May 2019. We expanded the search by adding four Chinese databases, searched from 1 January 2012 to 19 May 2019. We checked bibliographies of relevant papers identified and contacted pharmaceutical companies, trial authors, and experts in the field to identify any additional published or unpublished data. SELECTION CRITERIA: We included all randomised controlled trials of Cerebrolysin used in people living with vascular dementia. We applied no language restriction. DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials for inclusion and evaluated their methodological quality. Data were extracted and analysed using mean differences (MDs) or standardised mean differences (SMDs) with 95% confidence intervals (95% CI) for continuous outcomes. We reported dichotomous outcomes as risk ratio (RR) with 95% CI. We assessed the strength of the available evidence using the GRADE approach. MAIN RESULTS: We identified six randomised controlled trials with a total of 597 participants that were eligible for inclusion in the 2013 review. No new studies were eligible for inclusion in this update. Participants in the included studies, where dementia severity was reported, had mild to moderate severity of vascular dementia (four trials). The included studies tested varying doses and duration of Cerebrolysin treatment. Follow-up ranged from 15 days to three years. Five of included studies were conducted in China (three studies), Russia (one study), and Romania (one study), while relevant information of other study was unclear. Where details of funding were available, all studies were supported by the pharmaceutical industry (three studies). Cognitive function was measured using the Mini-Mental State Examination (MMSE) or Alzheimer's Disease Assessment Scale Cognitive Subpart, extended version (ADAS-cog+). Combining the MMSE and ADAS-cog+ data (three studies, 420 people), there was a beneficial effect of Cerebrolysin (SMD 0.36, 95% CI 0.13 to 0.58; very low-quality evidence). Global function was measured by Clinician's Interview-Based Impression of Change plus Caregiver Input (CIBIC+) or Investigator's Clinical Global Impression (CGI). We assessed response rates on these measures (the proportion of participants with a CIBIC+ score of < 3; or at least moderate improvement of the CGI rating at the last visit). There was a beneficial effect of Cerebrolysin (two studies, 379 participants, RR 2.69, 95% CI 1.82 to 3.98; very low-quality evidence). Only one trial described mortality and reported no deaths. Four studies reported adverse events; data from two studies (379 people) were in a format that permitted meta-analysis, and there was no difference in rates of adverse effects (RR 0.91, 95% CI 0.29 to 2.85; very low-quality evidence). No studies reported on quality of life or caregiver burden. AUTHORS' CONCLUSIONS: Courses of intravenous Cerebrolysin improved cognition and general function in people living with vascular dementia, with no suggestion of adverse effects. However, these data are not definitive. Our analyses were limited by heterogeneity, and the included papers had high risk of bias. If there are benefits of Cerebrolysin, the effects may be too small to be clinically meaningful. There have been no new studies of Cerebrolysin in vascular dementia since the last Cochrane Review. Cerebrolysin continues to be used and promoted as a treatment for vascular dementia, but the supporting evidence base is weak. Adequately powered, methodologically robust trials are needed to properly assess the effects of Cerebrolysin in vascular dementia.

6.
J Clin Sleep Med ; 15(11): 1697-1698, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31739864
7.
Exp Gerontol ; : 110789, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31765742

RESUMO

Sarcopenia is an aging-related disease, described as the progressive reduction in mass and strength of skeletal muscle. Sarcopenia is typically characterized as the accumulation of damaged products due to an imbalance between protein synthesis and protein degradation. This imbalance between protein synthesis and degradation is attributed to impaired autophagic signal pathways. Sarcopenia can predispose elderly patients to several complications that may significantly impact patient quality of life. Recent evidence indicates that autophagy is required for the control of skeletal muscle mass under catabolic conditions and plays a crucial role in maintaining the homeostasis and integrity of skeletal muscle, specifically at appropriate level of autophagy. Exercise may be considered as a stress stimulus that can substantially modulate cellular signaling to promote metabolic adaptations. Appropriate exercise can induce autophagy or regulate the functional status of autophagy. Additionally, exercise-induced autophagy is the most effective treatment available in slowing down sarcopenia, improving mitochondrial quality, and the number of quiescent satellite cells, as a process that depends on basal autophagy. The molecular mechanisms underpinning the development of sarcopenia, however, remained largely unknown. In this narrative review, the current molecular mechanisms of sarcopenia are discussed from the perspective of exercise-induced autophagy and the effect of different exercise modalities on this response. This narrative review will aim to provide the references for developing scientific and optimal intervention strategies including exercise intervention for the prevention and treatment of sarcopenia through regulating autophagic signal pathways.

8.
Nat Commun ; 10(1): 4936, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666505

RESUMO

Single atom catalysts exhibit particularly high catalytic activities in contrast to regular nanomaterial-based catalysts. Until recently, research has been mostly focused on single atom catalysts, and it remains a great challenge to synthesize bimetallic dimer structures. Herein, we successfully prepare high-quality one-to-one A-B bimetallic dimer structures (Pt-Ru dimers) through an atomic layer deposition (ALD) process. The Pt-Ru dimers show much higher hydrogen evolution activity (more than 50 times) and excellent stability compared to commercial Pt/C catalysts. X-ray absorption spectroscopy indicates that the Pt-Ru dimers structure model contains one Pt-Ru bonding configuration. First principle calculations reveal that the Pt-Ru dimer generates a synergy effect by modulating the electronic structure, which results in the enhanced hydrogen evolution activity. This work paves the way for the rational design of bimetallic dimers with good activity and stability, which have a great potential to be applied in various catalytic reactions.

9.
Nat Prod Res ; : 1-9, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31674853

RESUMO

Butyrolactone I, one of the major secondary metabolites of fungus Aspergillus terreus, is a selective cdc2 kinase inhibitor. In the present study, the metabolism of butyrolactone I in male Wistar rats was investigated by characterising metabolites excreted into faeces. Following an oral dose of 40 mg/kg butyrolactone I, two phase I metabolites were isolated from the faeces of rat. The new structure was identified on the spectroscopic data analysis. The new compound V1 and known compound V2 were tested for their cytotoxicity, antimicrobial and antioxidant activity. V1 and V2 showed significant free radical scavenging ability. V2 also showed strong inhibitory activity against Staphylococcus aureus.

11.
Inorg Chem ; 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31773950

RESUMO

For the first time, Th@Td(19151)-C76, a highly symmetric C76 cage encapsulating an actinide metal ion, has been synthesized and characterized by single-crystal X-ray crystallography, mass spectrometry, UV-vis-NIR spectroscopy, and cyclic voltammetry. The single-crystal crystallographic analysis unambiguously assigned the fullerene cage as Td(19151)-C76 and confirmed Th@Td(19151)-C76 as the first IPR (isolated-pentagon rule) C76-based monometallofullerene. The crystallographic results further revealed that the optimal Th site resides over a sumanene-type hexagon, similar to that of the Th@C1(11)-C86 but different from the previously reported Th@C3v(8)-C82. In addition, electrochemical study found that Th@Td(19151)-C76 processes an unusually low first oxidation potential (0.03 V), suggesting its strong electron donating ability.

12.
Artigo em Inglês | MEDLINE | ID: mdl-31776607

RESUMO

L-Theanine is a unique non-protein amino acid found in tea plants that has been shown to possess numerous functional properties relevant to food science and human nutrition. L-Theanine has been commercially developed as a valuable additive for use in food and beverages, and its market is expected to expand substantially if the production cost can be lowered. Although the enzymatic approach holds considerable potential for use in L-theanine production, demand exists for developing more tractable methods (than those currently available) that can be implemented under mild conditions and will reduce operational procedures and cost. Here, we sought to engineer fermentative production of L-theanine in Corynebacterium glutamicum, an industrially safe host. For L-theanine synthesis, we used γ-glutamylmethylamide synthetase (GMAS), which catalyzes the ATP-dependent ligation of L-glutamate and ethylamine. First, distinct GMASs were expressed in C. glutamicum wild-type ATCC 13032 strain and GDK-9, an L-glutamate overproducing strain, to produce L-theanine upon ethylamine addition to the hosts. Second, the L-glutamate exporter in host cells was disrupted, which markedly increased the L-theanine titer in GDK-9 cells and almost eliminated the accumulation of L-glutamate in the culture medium. Third, a chromosomally gmasMm-integrated L-alanine producer was constructed and used, attempting to synthesize ethylamine endogenously by expressing plant-derived L-serine/L-alanine decarboxylases; however, these enzymes showed no L-alanine decarboxylase activity under our experimental conditions. The optimal engineered strain that we ultimately created produced ~ 42 g/L L-theanine, with a yield of 19.6%, in a 5-L fermentor. This is the first report of fermentative production of L-theanine achieved using ethylamine supplementation.

13.
Neuroimage ; : 116287, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31655111

RESUMO

Rumination is strongly and consistently correlated with depression. Although multiple studies have explored the neural correlates of rumination, findings have been inconsistent and the mechanisms underlying rumination remain elusive. Functional brain imaging studies have identified areas in the default mode network (DMN) that appear to be critically involved in ruminative processes. However, a meta-analysis to synthesize the findings of brain regions underlying rumination is currently lacking. Here, we conducted a meta-analysis consisting of experimental tasks that investigate rumination by using Signed Differential Mapping of 14 fMRI studies comprising 286 healthy participants. Furthermore, rather than treat the DMN as a unitary network, we examined the contribution of three DMN subsystems to rumination. Results confirm the suspected association between rumination and DMN activation, specifically implicating the DMN core regions and the dorsal medial prefrontal cortex subsystem. Based on these findings, we suggest a hypothesis of how DMN regions support rumination and present the implications of this model for treating major depressive disorder characterized by rumination.

14.
J BUON ; 24(4): 1408-1413, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31646784

RESUMO

PURPOSE: The purpose of the study is to identify the Cancer Stem Cells (CSCs) and to determine their expression profiles in different pathological stages of liver cancer by using multiple markers Methods: In this study, the expression profiles of CD133 and CD13, along with those of stem cell markers Oct4 and SOX2, were analyzed using immunohistochemistry and immunoblotting to clarify the character of CSCs in different stages of liver cancer. RESULTS: CD133 liver cancer cells were injected into mice, and the tissues were processed for histology. The histological data revealed the progression of liver cancer. Immunohistochemical analysis showed the strong expression of CD133 in metastatic cancer. In contrast, the expression of CD13 in both primary and metastatic liver cancer was found to be very strong. Interestingly, the expression levels of Oct4 and SOX2 were found to be upregulated in primary tumors, but, in the metastatic stage, their expression was downregulated. The immunoblot analysis also confirmed the same result. CONCLUSIONS: Our findings demonstrate that tumor-suppressor proteins Oct4 and SOX2 have a prominent expression profile in the primary stage of cancer, but, in the metastatic stage, their expression is downregulated, leading to the failure to prevent metastatic cancer.

15.
FASEB J ; : fj201901347RR, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31648561

RESUMO

Twist-related protein 2 (TWIST2) is identified as a basic helix-loop-helix (b-HLH) transcription repressor by dimerizing with other b-HLH proteins. The significance of TWIST2 has been emphasized in various tumors; however, few studies report its functions in metabolism and metabolic diseases. Here we aimed to explore the novel role and regulation mechanism of TWIST2 in hepatic steatosis. Our results showed that Twist2 knockdown caused mice obesity, insulin resistance, and hepatic steatosis, which were accompanied with inflammation, endoplasmic reticulum stress, and mitochondrial dysfunction. In vitro, TWIST2 overexpression ameliorated hepatocellular steatosis, inhibited inflammation, and improved mitochondrial content and function with a fibroblast growth factor 21 (FGF21)-dependent pattern. NF-κB negatively regulated FGF21 transcription by directly binding to FGF21 promoter DNA, which was eliminated by TWIST2 overexpression by inhibiting NF-κB expression and translocation to nucleus. TWIST2 overexpression decreased intracellular reactive oxygen species level, increased mitochondrial DNA and biogenesis, and enhanced ATP production and antioxidation ability. Additionally, TWIST2 expression was repressed by insulin-targeting sterol regulatory element-binding protein 1c (SREBP1c) and forkhead box protein O1 and was enhanced by dexamethasone targeting Krüppel-like factor 15, which directly interacted with Twist2 promoter DNA. Together, our studies identify an important role and regulation mechanism of TWIST2 in maintaining hepatic homeostasis by ameliorating steatosis, inflammation, and oxidative stress via the NF-κB-FGF21 or SREBP1c-FGF21 pathway, which may provide a new therapeutic scheme for nonalcoholic fatty liver disease.-Zhou, L., Li, Q., Chen, A., Liu, N., Chen, N., Chen, X., Zhu, L., Xia, B., Gong, Y., Chen, X. KLF15-activating Twist2 ameliorated hepatic steatosis by inhibiting inflammation and improving mitochondrial dysfunction via NF-κB-FGF21 or SREBP1c-FGF21 pathway.

16.
Bioengineered ; 10(1): 561-573, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31648597

RESUMO

Currently, the mechanism of temperature-sensitive production of glutamate in Corynebacterium glutamicum has not been clarified. We first found the murA and murB genes were potentially related to temperature-sensitive secretion of glutamate, which were not existed in a temperature-sensitive mutant. When replenishing murA or/and murB in the mutant, the temperature sensitivity was weakened. While, their knockout in a wild-type strain resulted in temperature-sensitive secretion of glutamate. Peptidoglycan analysis showed that deletion of murA and murB decreased the peptidoglycan synthesis. Comparative metabolomics analysis suggested that the variation in cell wall structure resulted in decreased overall cellular metabolism but increased carbon flow to glutamate synthesis, which was a typical metabolism pattern in industrial temperature-sensitive producing strains. This study clarifies the mechanism between murA and murB deletion and the temperature-sensitive secretion of glutamate in C. glutamcium, and provides a reference for the metabolic engineering of cell wall to obtain increased bioproduction of chemicals.

17.
J Clin Sleep Med ; 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31583994
18.
Mol Med Rep ; 20(6): 5304-5314, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31661127

RESUMO

RNA­Sequencing and methylation data for hepatocellular carcinoma (HCC) were downloaded from The Cancer Genome Atlas (TCGA). The aberrantly expressed methylation­driven genes in HCC and normal tissues were identified using the Limma package and the MethylMix algorithm. The Database for Annotation, Visualization and Integrated Discovery and ConsensusPathDB were used for Gene Ontology (GO) enrichment and pathway analysis. Univariate and multivariate Cox regression analyses were used to construct a prognostic risk model of HCC. Survival curve and receiver operating characteristic (ROC) curves were applied to evaluate the clinical utility of the risk model. A total of 238 methylation­driven genes were successfully identified from cancer and normal tissues. GO enrichment analysis indicated that these genes functioned in the extracellular space, interfering with lipid metabolism in hepatocytes and regulating adaptive immune responses. In total, 14 relevant pathways were identified. The following prognostic risk model was generated: Risk score=CALML3 (degree of methylation) x (­4.860) + CCNI2 x (2.071) + TNFRSF12A x (­3.369) + IFITM1 x (1.203) + ENPP7P13 x (­1.366) + DDT x (2.139) + RASAL2­AS1 x (­1.384) + ANKRD22 x (­3.215). The median risk score (0.970) derived from this model was set as cutoff value for assigning patients to high­ or low­risk group. The 5­year survival rate was 35.8% [95% confidence interval (CI)=27.1­47.4%] in the high­risk group and 61.7% (95% CI=51.4­74.2%) in the low­risk group (P<0.0001). The ROC curve showed an area under the curve of 0.742, indicating that this model is appropriate for predicting the survival rate of patients. Furthermore, the methylation and expression levels of two key genes, tumor necrosis factor superfamily member 12A and D­dopachrome decarboxylase, were significantly associated with prognosis and were correlated with cg00510447, cg26808293, cg11060661 and cg16132339 methylation. In conclusion, a prognostic risk model for HCC is proposed based on the bioinformatic analysis of methylation­driven genes. The findings of the present study may improve understanding of the pathogenesis and prognosis of HCC.

19.
Opt Express ; 27(15): 21380-21394, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31510217

RESUMO

We theoretically implement some hyperparallel optical elements, including quantum single photon transistor, router, and dynamic random access memory (DRAM). The inevitable side leakage and the imperfect birefringence of the quantum dot (QD)-cavity mediates are taken into account, and unity fidelities of our optical elements can be achieved. The hyperparallel constructions are based on polarization and spatial degrees of freedom (DOFs) of the photon to increase the parallel efficiency, improve the capacity of channel, save the quantum resources, reduce the operation time, and decrease the environment noises. Moreover, the practical schemes are robust against the side leakage and the coupling strength limitation in the microcavities.

20.
J Phys Chem B ; 123(38): 8057-8064, 2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31478670

RESUMO

Amyloid fibrillation is closely associated with a series of neurodegenerative diseases. According to that, the intermediate soluble oligomers and protofibrils are more toxic; reducing their concentrations in protein solutions by accelerating fibrillation is believed as a feasible strategy for treatment or remission of the diseases. Using hen egg-white lysozyme (HEWL) as a model protein, the promotion effect of succinimide was revealed by a series of experiments, e.g., atomic force microscopy (AFM), thioflavin T (ThT) fluorescence assay, Far-UV circular dichroism (CD) and Raman spectroscopy, and modeling the effect of succinimide-like derivative intermediates of intramolecular deamidation of the backbone during amyloid fibrillation. The AFM measurement confirmed that succinimide effectively accelerated the morphological changes of HEWL, while at the molecular level, the accelerative transformation of protein secondary structures was also clarified by ThT fluorescence assay and Far-UV CD spectroscopy. The incubation time-dependent Raman spectroscopy further revealed that the direct transformation from α-helices to organized ß-sheets occurred upon skipping the intermediate random coils under the action of succinimide. This "bridge" effect of succinimide was attributed to its special influence on disulfide bonds. In the presence of succinimide in protein solutions, the native disulfide bonds of lysozyme could be broken more efficiently and quickly within hydrolysis, resulting in exposure of the buried hydrophobic residues and accelerating the formation of cross ß-sheet structures. The present investigation provides very useful information for understanding the effect of intramolecular deamidation on the whole amyloid fibrillation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA