Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Signal Transduct Target Ther ; 6(1): 405, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795208

RESUMO

Thalidomide induces γ-globin expression in erythroid progenitor cells, but its efficacy on patients with transfusion-dependent ß-thalassemia (TDT) remains unclear. In this phase 2, multi-center, randomized, double-blind clinical trial, we aimed to determine the safety and efficacy of thalidomide in TDT patients. A hundred patients of 14 years or older were randomly assigned to receive placebo or thalidomide for 12 weeks, followed by an extension phase of at least 36 weeks. The primary endpoint was the change of hemoglobin (Hb) level in the patients. The secondary endpoints included the red blood cell (RBC) units transfused and adverse effects. In the placebo-controlled period, Hb concentrations in patients treated with thalidomide achieved a median elevation of 14.0 (range, 2.5 to 37.5) g/L, whereas Hb in patients treated with placebo did not significantly change. Within the 12 weeks, the mean RBC transfusion volume for patients treated with thalidomide and placebo was 5.4 ± 5.0 U and 10.3 ± 6.4 U, respectively (P < 0.001). Adverse events of drowsiness, dizziness, fatigue, pyrexia, sore throat, and rash were more common with thalidomide than placebo. In the extension phase, treatment with thalidomide for 24 weeks resulted in a sustainable increase in Hb concentrations which reached 104.9 ± 19.0 g/L, without blood transfusion. Significant increase in Hb concentration and reduction in RBC transfusions were associated with non ß0/ß0 and HBS1L-MYB (rs9399137 C/T, C/C; rs4895441 A/G, G/G) genotypes. These results demonstrated that thalidomide is effective in patients with TDT.

2.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34649996

RESUMO

Infusing CRISPR/donor-loaded adeno-associated viral vectors (AAV/CRISPR) could enable in vivo hepatic gene editing to remedy hemophilia B (HB) with inherited deficiency of clotting factor IX (FIX). Yet, current regimens focus on correcting HB with simple mutations in the coding region of the F9, overlooking those carrying complicated mutations involving the regulatory region. Moreover, a possible adverse effect of treatment-related inflammation remains unaddressed. Here we report that a single DNA cutting-mediated long-range replacement restored the FIX-encoding function of a mutant F9 (mF9) carrying both regulatory and coding defects in a severe mouse HB model, wherein incorporation of a synthetic Alb enhancer/promoter-mimic (P2) ensured FIX elevation to clinically meaningful levels. Through single-cell RNA sequencing (scRNA-seq) of liver tissues, we revealed that a subclinical hepatic inflammation post-AAV/CRISPR administration regulated the vulnerability of the edited mF9-harboring host cells to cytotoxic T lymphocytes (CTLs) and the P2 activity in a hepatocytic subset-dependent manner via modulating specific sets of liver-enriched transcription factors (LETFs). Collectively, our study establishes an AAV/CRISPR-mediated gene-editing protocol applicable to complicated monogenetic disorders, underscoring the potentiality of improving therapeutic benefits through managing inflammation.

3.
Blood ; 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34695195

RESUMO

In an effort to identify novel drugs targeting fusion-oncogene induced acute myeloid leukemia (AML), we performed high-resolution proteomic analysis. In AML1-ETO (AE) driven AML we uncovered a de-regulation of phospholipase C (PLC) signaling. We identified PLCgamma 1 (PLCG1) as a specific target of the AE fusion protein which is induced after AE binding to intergenic regulatory DNA elements. Genetic inactivation of PLCG1 in murine and human AML inhibited AML1-ETO dependent self-renewal programs, leukemic proliferation, and leukemia maintenance in vivo. In contrast, PLCG1 was dispensable for normal hematopoietic stem- and progenitor cell function. These findings are extended to and confirmed by pharmacologic perturbation of Ca++-signaling in AML1-ETO AML cells, indicating that the PLCG1 pathway poses an important therapeutic target for AML1-ETO positive leukemic stem cells.

4.
Cell Discov ; 7(1): 98, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34697290

RESUMO

The amino acid response (AAR) and unfolded protein response (UPR) pathways converge on eIF2α phosphorylation, which is catalyzed by Gcn2 and Perk, respectively, under different stresses. This close interconnection makes it difficult to specify different functions of AAR and UPR. Here, we generated a zebrafish model in which loss of threonyl-tRNA synthetase (Tars) induces angiogenesis dependent on Tars aminoacylation activity. Comparative transcriptome analysis of the tars-mutant and wild-type embryos with/without Gcn2- or Perk-inhibition reveals that only Gcn2-mediated AAR is activated in the tars-mutants, whereas Perk functions predominantly in normal development. Mechanistic analysis shows that, while a considerable amount of eIF2α is normally phosphorylated by Perk, the loss of Tars causes an accumulation of uncharged tRNAThr, which in turn activates Gcn2, leading to phosphorylation of an extra amount of eIF2α. The partial switchover of kinases for eIF2α largely overwhelms the functions of Perk in normal development. Interestingly, although inhibition of Gcn2 and Perk in this stress condition both can reduce the eIF2α phosphorylation levels, their functional consequences in the regulation of target genes and in the rescue of the angiogenic phenotypes are dramatically different. Indeed, genetic and pharmacological manipulations of these pathways validate that the Gcn2-mediated AAR, but not the Perk-mediated UPR, is required for tars-deficiency induced angiogenesis. Thus, the interconnected AAR and UPR pathways differentially regulate angiogenesis through selective functions and mutual competitions, reflecting the specificity and efficiency of multiple stress response pathways that evolve integrally to enable an organism to sense/respond precisely to various types of stresses.

5.
Cancer Commun (Lond) ; 41(11): 1116-1136, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34699692

RESUMO

BACKGROUND: Abnormal alternative splicing is frequently associated with carcinogenesis. In B-cell acute lymphoblastic leukemia (B-ALL), double homeobox 4 fused with immunoglobulin heavy chain (DUX4/IGH) can lead to the aberrant production of E-26 transformation-specific family related gene abnormal transcript (ERGalt ) and other splicing variants. However, the molecular mechanism underpinning this process remains elusive. Here, we aimed to know how DUX4/IGH triggers abnormal splicing in leukemia. METHODS: The differential intron retention analysis was conducted to identify novel DUX4/IGH-driven splicing in B-ALL patients. X-ray crystallography, small angle X-ray scattering (SAXS), and analytical ultracentrifugation were used to investigate how DUX4/IGH recognize double DUX4 responsive element (DRE)-DRE sites. The ERGalt biogenesis and B-cell differentiation assays were performed to characterize the DUX4/IGH crosslinking activity. To check whether recombination-activating gene 1/2 (RAG1/2) was required for DUX4/IGH-driven splicing, the proximity ligation assay, co-immunoprecipitation, mammalian two hybrid characterizations, in vitro RAG1/2 cleavage, and shRNA knock-down assays were performed. RESULTS: We reported previously unrecognized intron retention events in C-type lectin domain family 12, member A abnormal transcript (CLEC12Aalt ) and chromosome 6 open reading frame 89 abnormal transcript (C6orf89alt ), where also harbored repetitive DRE-DRE sites. Supportively, X-ray crystallography and SAXS characterization revealed that DUX4 homeobox domain (HD)1-HD2 might dimerize into a dumbbell-shape trans configuration to crosslink two adjacent DRE sites. Impaired DUX4/IGH-mediated crosslinking abolishes ERGalt , CLEC12Aalt , and C6orf89alt biogenesis, resulting in marked alleviation of its inhibitory effect on B-cell differentiation. Furthermore, we also observed a rare RAG1/2-mediated recombination signal sequence-like DNA edition in DUX4/IGH target genes. Supportively, shRNA knock-down of RAG1/2 in leukemic Reh cells consistently impaired the biogenesis of ERGalt , CLEC12Aalt , and C6orf89alt . CONCLUSIONS: All these results suggest that DUX4/IGH-driven DNA crosslinking is required for RAG1/2 recruitment onto the double tandem DRE-DRE sites, catalyzing V(D)J-like recombination and oncogenic splicing in acute lymphoblastic leukemia.

6.
Nat Cancer ; 2(8): 780-793, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34485921

RESUMO

Chimeric antigen receptor (CAR) T-cell therapies have evolved from a research tool to a paradigm-shifting therapy with impressive responses in B cell malignancies. This review summarizes the current state of the CAR T-cell field, focusing on CD19- and B cell maturation antigen-directed CAR T-cells, the most developed of the CAR T-cell therapies. We discuss the many challenges to CAR-T therapeutic success and innovations in CAR design and T-cell engineering aimed at extending this therapeutic platform beyond hematologic malignancies.

7.
JCO Glob Oncol ; 7: 1176-1186, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34292767

RESUMO

This study explored results of therapy of children with acute lymphoblastic leukemia (ALL) in China, recent progress, and challenges. Included are a survey of therapy outcomes of ALL in Chinese children nationwide, comparison of these data with global ALL therapy outcomes, analyses of obstacles to improving outcomes, and suggestions of how progress can be achieved. Therapy outcomes at many Chinese pediatric cancer centers are approaching those of resource-rich countries. However, nationwide outcomes still need improvement. Obstacles include suboptimal clinical trials participation, children without adequate health care funding, human resource shortages, especially physicians expert in pediatric hematology and oncology, and social-economic disparities. We suggest how these obstacles have been and continue to be remedied including expanded access to protocol-based therapy, improved supportive care, health care reforms, recruitment of trained personnel, and international collaborations. China has made substantial progress treating children with ALL. We envision even better outcomes in the near future.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , China , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Resultado do Tratamento
8.
Cell Death Dis ; 12(6): 568, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078881

RESUMO

GATA2, a key transcription factor in hematopoiesis, is frequently mutated in hematopoietic malignancies. How the GATA2 mutants contribute to hematopoiesis and malignant transformation remains largely unexplored. Here, we report that Gata2-L359V mutation impeded hematopoietic differentiation in murine embryonic and adult hematopoiesis and blocked murine chronic myeloid leukemia (CML) cell differentiation. We established a Gata2-L359V knockin mouse model in which the homozygous Gata2-L359V mutation caused major defects in primitive erythropoiesis with an accumulation of erythroid precursors and severe anemia, leading to embryonic lethality around E11.5. During adult life, the Gata2-L359V heterozygous mice exhibited a notable decrease in bone marrow (BM) recovery under stress induction with cytotoxic drug 5-fluorouracil. Using RNA sequencing, it was revealed that homozygous Gata2-L359V suppressed genes related to embryonic hematopoiesis in yolk sac, while heterozygous Gata2-L359V dysregulated genes related to cell cycle and proliferation in BM Lin-Sca1+c-kit+ cells. Furthermore, through chromatin immunoprecipitation sequencing and transactivation experiments, we found that this mutation enhanced the DNA-binding capacity and transcriptional activities of Gata2, which was likely associated with the altered expression of some essential genes during embryonic and adult hematopoiesis. In mice model harboring BCR/ABL, single-cell RNA-sequencing demonstrated that Gata2-L359V induced additional gene expression profile abnormalities and partially affected cell differentiation at the early stage of myelomonocytic lineage, evidenced by the increase of granulocyte-monocyte progenitors and monocytosis. Taken together, our study unveiled that Gata2-L359V mutation induces defective hematopoietic development and blocks the differentiation of CML cells.


Assuntos
Fator de Transcrição GATA2/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Animais , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Fator de Transcrição GATA2/genética , Hematopoese , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação
9.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33495363

RESUMO

As all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) are widely accepted in treating acute promyelocytic leukemia (APL), deescalating toxicity becomes a research hotspot. Here, we evaluated whether chemotherapy could be replaced or reduced by ATO in APL patients at different risks. After achieving complete remission with ATRA-ATO-based induction therapy, patients were randomized (1:1) into ATO and non-ATO groups for consolidation: ATRA-ATO versus ATRA-anthracycline for low-/intermediate-risk patients, or ATRA-ATO-anthracycline versus ATRA-anthracycline-cytarabine for high-risk patients. The primary end point was to assess disease-free survival (DFS) at 3 y by a noninferiority margin of -5%; 855 patients were enrolled with a median follow-up of 54.9 mo, and 658 of 755 patients could be evaluated at 3 y. In the ATO group, 96.1% (319/332) achieved 3-y DFS, compared to 92.6% (302/326) in the non-ATO group. The difference was 3.45% (95% CI -0.07 to 6.97), confirming noninferiority (P < 0.001). Using the Kaplan-Meier method, the estimated 7-y DFS was 95.7% (95% CI 93.6 to 97.9) in ATO and 92.6% (95% CI 89.8 to 95.4) in non-ATO groups (P = 0.066). Concerning secondary end points, the 7-y cumulative incidence of relapse (CIR) was significantly lower in ATO (2.2% [95% CI 1.1 to 4.2]) than in non-ATO group (6.1% [95% CI 3.9 to 9.5], P = 0.011). In addition, grade 3 to 4 hematological toxicities were significantly reduced in the ATO group during consolidation. Hence, ATRA-ATO in both chemotherapy-replacing and -reducing settings in consolidation is not inferior to ATRA-chemotherapy (https://www.clinicaltrials.gov/, NCT01987297).


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Trióxido de Arsênio/administração & dosagem , Leucemia Promielocítica Aguda/tratamento farmacológico , Tretinoína/administração & dosagem , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Trióxido de Arsênio/efeitos adversos , Quimioterapia de Consolidação/efeitos adversos , Citarabina/administração & dosagem , Citarabina/efeitos adversos , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Indução de Remissão , Resultado do Tratamento , Tretinoína/efeitos adversos
10.
Cancer Cell ; 39(2): 225-239.e8, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33357454

RESUMO

TP53 is the most frequently mutated gene in cancer, yet these mutations remain therapeutically non-actionable. Major challenges in drugging p53 mutations include heterogeneous mechanisms of inactivation and the absence of broadly applicable allosteric sites. Here we report the identification of small molecules, including arsenic trioxide (ATO), an established agent in treating acute promyelocytic leukemia, as cysteine-reactive compounds that rescue structural p53 mutations. Crystal structures of arsenic-bound p53 mutants reveal a cryptic allosteric site involving three arsenic-coordinating cysteines within the DNA-binding domain, distal to the zinc-binding site. Arsenic binding stabilizes the DNA-binding loop-sheet-helix motif alongside the overall ß-sandwich fold, endowing p53 mutants with thermostability and transcriptional activity. In cellular and mouse xenograft models, ATO reactivates mutant p53 for tumor suppression. Investigation of the 25 most frequent p53 mutations informs patient stratification for clinical exploration. Our results provide a mechanistic basis for repurposing ATO to target p53 mutations for widely applicable yet personalized cancer therapies.


Assuntos
Sítio Alostérico/efeitos dos fármacos , Antineoplásicos/farmacologia , Trióxido de Arsênio/farmacologia , Leucemia Promielocítica Aguda/tratamento farmacológico , Mutação/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Células A549 , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HCT116 , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Células PC-3
11.
J Hematol Oncol ; 13(1): 171, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33302977

RESUMO

Hematopoietic reprogramming holds great promise for generating functional target cells and provides new angle for understanding hematopoiesis. We reported before for the first time that diverse differentiated hematopoietic cell lineages could be reprogrammed back into hematopoietic stem/progenitor cell-like cells by chemical cocktail. However, the exact cell types of induced cells and reprogramming trajectory remain elusive. Here, based on genetic tracing method CellTagging and single-cell RNA sequencing, it is found that neutrophils could be reprogrammed into multipotent progenitors, which acquire multi-differentiation potential both in vitro and in vivo, including into lymphoid cells. Construction of trajectory map of the reprogramming procession shows that mature neutrophils follow their canonical developmental route reversely into immature ones, premature ones, granulocyte/monocyte progenitors, common myeloid progenitors, and then the terminal cells, which is stage by stage or skips intermediate stages. Collectively, this study provides a precise dissection of hematopoietic reprogramming procession and sheds light on chemical cocktail-induction of hematopoietic stem cells.


Assuntos
Técnicas de Reprogramação Celular , Reprogramação Celular/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Neutrófilos/efeitos dos fármacos , Animais , Células Cultivadas , Técnicas de Reprogramação Celular/métodos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Neutrófilos/citologia , Análise de Célula Única
12.
Cell Discov ; 6: 72, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088589

RESUMO

Setd2 is the only enzyme that catalyzes histone H3 lysine 36 trimethylation (H3K36me3) on virtually all actively transcribed protein-coding genes, and this mechanism is evolutionarily conserved from yeast to human. Despite this widespread and conserved activity, Setd2 and H3K36me3 are dispensable for normal growth of yeast but are absolutely required for mammalian embryogenesis, such as oocyte maturation and embryonic vasculogenesis in mice, raising a question of how the functional requirements of Setd2 in specific developmental stages have emerged through evolution. Here, we explored this issue by studying the essentiality and function of Setd2 in zebrafish. Surprisingly, the setd2-null zebrafish are viable and fertile. They show Mendelian birth ratio and normal embryogenesis without vascular defect as seen in mice; however, they have a small body size phenotype attributed to insufficient energy metabolism and protein synthesis, which is reversable in a nutrition-dependent manner. Unlike the sterile Setd2-null mice, the setd2-null zebrafish can produce functional sperms and oocytes. Nonetheless, related to the requirement of maternal Setd2 for oocyte maturation in mice, the second generation of setd2-null zebrafish that carry no maternal setd2 show decreased survival rate and a developmental delay at maternal-to-zygotic transition. Taken together, these results indicate that, while the phenotypes of the setd2-null zebrafish and mice are apparently different, they are matched in parallel as the underlying mechanisms are evolutionarily conserved. Thus, the differential requirements of Setd2 may reflect distinct viability thresholds that associate with intrinsic and/or extrinsic stresses experienced by the organism through development, and these epigenetic regulatory mechanisms may serve as a reserved source supporting the evolution of life from simplicity to complexity.

13.
Proc Natl Acad Sci U S A ; 117(33): 20117-20126, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747558

RESUMO

t(8;21)(q22;q22) acute myelogenous leukemia (AML) is morphologically characterized by a continuum of heterogeneous leukemia cells from myeloblasts to differentiated myeloid elements. Thus, t(8;21) AML is an excellent model for studying heterogeneous cell populations and cellular evolution during disease progression. Using integrative analyses of immunophenotype, RNA-sequencing (RNA-seq), and single-cell RNA-sequencing (scRNA-seq), we identified three distinct intrapatient leukemic cell populations that were arrested at different stages of myeloid differentiation: CD34+CD117dim blasts, CD34+CD117bri blasts, and abnormal myeloid cells with partial maturation (AM). CD117 is also known as c-KIT protein. CD34+CD117dim cells were blocked in the G0/G1 phase at disease onset, presenting with the regular morphology of myeloblasts showing features of granulocyte-monocyte progenitors (GMP), and were drug-resistant to chemotherapy. Genes associated with cell migration and adhesion (LGALS1, EMP3, and ANXA 2) were highly expressed in the CD34+CD117dim population. CD34+CD117bri blasts were blocked a bit later than the CD34+CD117dim population in the hematopoietic differentiation stage and displayed high proliferation ability. AM cells, which bear abnormal myelocyte morphology, especially overexpressed granule genes AZU1, ELANE, and PRTN3 and were sensitive to chemotherapy. scRNA-seq at different time points identified CD34+CD117dim blasts as an important leukemic cluster that expanded at postrelapse refractory stage after several cycles of chemotherapy. Patients with t(8;21) AML with a higher proportion of CD34+CD117dim cells had significantly worse clinical outcomes than those with a lower CD34+CD117dim proportion. Univariate and multivariate analyses identified CD34+CD117dim proportion as an independent factor for poor disease outcome. Our study provides evidence for the multidimensional heterogeneity of t(8;21)AML and may offer new tools for future disease stratification.


Assuntos
Leucemia Mieloide Aguda/classificação , Leucemia Mieloide Aguda/patologia , Subpopulações de Linfócitos T/classificação , Subpopulações de Linfócitos T/metabolismo , Adulto , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/metabolismo , Transcriptoma
14.
Cancer Cell ; 37(3): 403-419.e6, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32183952

RESUMO

Natural killer/T cell lymphoma (NKTCL) is an aggressive and heterogeneous entity of non-Hodgkin lymphoma, strongly associated with Epstein-Barr virus (EBV) infection. To identify molecular subtypes of NKTCL based on genomic structural alterations and EBV sequences, we performed multi-omics study on 128 biopsy samples of newly diagnosed NKTCL and defined three prominent subtypes, which differ significantly in cell of origin, EBV gene expression, transcriptional signatures, and responses to asparaginase-based regimens and targeted therapy. Our findings thus identify molecular networks of EBV-associated pathogenesis and suggest potential clinical strategies on NKTCL.


Assuntos
Herpesvirus Humano 4/genética , Linfoma de Células T/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Genômica , Humanos , Linfoma de Células T/mortalidade , Linfoma de Células T/patologia , Linfoma de Células T/virologia , Terapia de Alvo Molecular , Mutação , Células T Matadoras Naturais/patologia , Filogenia , Transcriptoma , Sequenciamento Completo do Genoma , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
15.
Blood ; 135(25): 2271-2285, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32202636

RESUMO

SETD2, the histone H3 lysine 36 methyltransferase, previously identified by us, plays an important role in the pathogenesis of hematologic malignancies, but its role in myelodysplastic syndromes (MDSs) has been unclear. In this study, low expression of SETD2 correlated with shortened survival in patients with MDS, and the SETD2 levels in CD34+ bone marrow cells of those patients were increased by decitabine. We knocked out Setd2 in NUP98-HOXD13 (NHD13) transgenic mice, which phenocopies human MDS, and found that loss of Setd2 accelerated the transformation of MDS into acute myeloid leukemia (AML). Loss of Setd2 enhanced the ability of NHD13+ hematopoietic stem and progenitor cells (HSPCs) to self-renew, with increased symmetric self-renewal division and decreased differentiation and cell death. The growth of MDS-associated leukemia cells was inhibited though increasing the H3K36me3 level by using epigenetic modifying drugs. Furthermore, Setd2 deficiency upregulated hematopoietic stem cell signaling and downregulated myeloid differentiation pathways in the NHD13+ HSPCs. Our RNA-seq and chromatin immunoprecipitation-seq analysis indicated that S100a9, the S100 calcium-binding protein, is a target gene of Setd2 and that the addition of recombinant S100a9 weakens the effect of Setd2 deficiency in the NHD13+ HSPCs. In contrast, downregulation of S100a9 leads to decreases of its downstream targets, including Ikba and Jnk, which influence the self-renewal and differentiation of HSPCs. Therefore, our results demonstrated that SETD2 deficiency predicts poor prognosis in MDS and promotes the transformation of MDS into AML, which provides a potential therapeutic target for MDS-associated acute leukemia.


Assuntos
Anemia Refratária com Excesso de Blastos/patologia , Calgranulina B/fisiologia , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/fisiologia , Leucemia Mieloide Aguda/etiologia , Anemia Refratária com Excesso de Blastos/genética , Anemia Refratária com Excesso de Blastos/metabolismo , Animais , Calgranulina B/biossíntese , Calgranulina B/genética , Transformação Celular Neoplásica , Células Cultivadas , Decitabina/farmacologia , Regulação para Baixo , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/patologia , Código das Histonas/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/biossíntese , Histona-Lisina N-Metiltransferase/genética , Proteínas de Homeodomínio/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Síndromes Mielodisplásicas/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Fusão Oncogênica/genética , Prognóstico , Proteínas Recombinantes/uso terapêutico , Fatores de Tempo , Análise Serial de Tecidos , Transcriptoma
16.
Adv Sci (Weinh) ; 7(1): 1901785, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31921559

RESUMO

Generation of hematopoietic stem/progenitor cells (HSPCs) via cell expansion or cell reprogramming has been widely achieved by overexpression of transcription factors. Herein, it is reported that without introducing exogenous genes, mouse fibroblasts can be reprogrammed into hemogenic cells based on lineage tracing analysis, which further develop into hematopoietic cells, by treatment of cocktails of chemical compounds. The chemical cocktails also reprogram differentiated hematopoietic cells back into HSPC-like cells. Most importantly, the chemical cocktails enabling hematopoietic reprogramming robustly promote HSPC proliferation ex vivo. The expanded HSPCs acquire enhanced capacity of hematopoietic reconstruction in vivo. Single-cell sequencing analysis verifies the expansion of HSPCs and the cell reprogramming toward potential generation of HSPCs at the same time by the chemical cocktail treatment. Thus, the proof-of-concept findings not only demonstrate that hematopoietic reprogramming can be achieved by chemical compounds but also provide a promising strategy for acquisition of HSPCs by chemical cocktail-enabled double effects.

18.
Proc Natl Acad Sci U S A ; 116(46): 23264-23273, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31662475

RESUMO

Glycolytic enzyme phosphoglycerate mutase 1 (PGAM1) plays a critical role in cancer metabolism by coordinating glycolysis and biosynthesis. A well-validated PGAM1 inhibitor, however, has not been reported for treating pancreatic ductal adenocarcinoma (PDAC), which is one of the deadliest malignancies worldwide. By uncovering the elevated PGAM1 expressions were statistically related to worse prognosis of PDAC in a cohort of 50 patients, we developed a series of allosteric PGAM1 inhibitors by structure-guided optimization. The compound KH3 significantly suppressed proliferation of various PDAC cells by down-regulating the levels of glycolysis and mitochondrial respiration in correlation with PGAM1 expression. Similar to PGAM1 depletion, KH3 dramatically hampered the canonic pathways highly involved in cancer metabolism and development. Additionally, we observed the shared expression profiles of several signature pathways at 12 h after treatment in multiple PDAC primary cells of which the matched patient-derived xenograft (PDX) models responded similarly to KH3 in the 2 wk treatment. The better responses to KH3 in PDXs were associated with higher expression of PGAM1 and longer/stronger suppressions of cancer metabolic pathways. Taken together, our findings demonstrate a strategy of targeting cancer metabolism by PGAM1 inhibition in PDAC. Also, this work provided "proof of concept" for the potential application of metabolic treatment in clinical practice.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Fosfoglicerato Mutase/antagonistas & inibidores , Regulação Alostérica , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos Nus , Camundongos SCID , Estrutura Molecular , Terapia de Alvo Molecular , Transplante de Neoplasias , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos
19.
Nat Commun ; 10(1): 3789, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31439836

RESUMO

ProMyelocyticLeukemia (PML) protein can polymerize into a mega-Dalton nuclear assembly of 0.1-2 µm in diameter. The mechanism of PML nuclear body biogenesis remains elusive. Here, PMLRBCC is successfully purified. The gel filtration and ultracentrifugation analysis suggest a previously unrecognized sequential oligomerization mechanism via PML monomer, dimer, tetramer and N-mer. Consistently, PML B1-box structure (2.0 Å) and SAXS characterization reveal an unexpected networking by W157-, F158- and SD1-interfaces. Structure-based perturbations in these B1 interfaces not only impair oligomerization in vitro but also abolish PML sumoylation and nuclear body biogenesis in HeLaPml-/- cell. More importantly, as demonstrated by in vivo study using transgenic mice, PML-RARα (PR) F158E precludes leukemogenesis. In addition, single cell RNA sequencing analysis shows that B1 oligomerization is an important regulator in PML-RARα-driven transactivation. Altogether, these results not only define a previously unrecognized B1-box oligomerization in PML, but also highlight oligomerization as an important factor in carcinogenesis.


Assuntos
Carcinogênese , Leucemia Promielocítica Aguda/patologia , Proteína da Leucemia Promielocítica/metabolismo , Multimerização Proteica , Animais , Técnicas de Inativação de Genes , Células HeLa , Humanos , Leucemia Promielocítica Aguda/genética , Camundongos , Camundongos Transgênicos , Mutação , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Fusão Oncogênica/ultraestrutura , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/ultraestrutura , Domínios Proteicos/genética , Receptor alfa de Ácido Retinoico/genética , Receptor alfa de Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico/ultraestrutura , Espalhamento a Baixo Ângulo , Análise de Sequência de RNA , Análise de Célula Única , Sumoilação , Difração de Raios X
20.
Lancet Haematol ; 6(6): e328-e337, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31126528

RESUMO

BACKGROUND: Anthracycline dose optimisation in the treatment of diffuse large B-cell lymphoma has rarely been tested. We aimed to find out whether R-CEOP70 was non-inferior to R-CHOP50 with less cardiotoxicity, and whether R-CEOP90 had a superior efficacy to R-CHOP50 or R-CEOP70 with acceptable toxic effects. METHODS: In this multicentre, phase 3, randomised, controlled study (NHL-001), patients with newly diagnosed diffuse large B-cell lymphoma or follicular lymphoma grade 3B were enrolled from 20 centres of the Multicenter Hematology-Oncology Programs Evaluation System in China. Young patients (16-60 years) were randomly assigned 1:1:1 (block size of six) to six courses of R-CHOP50, R-CEOP70, or R-CEOP90, and older patients (61-80 years) were assigned 1:1 (block size of four) to R-CHOP50 or R-CEOP70. Patients were randomly assigned using computer-assisted permuted-block randomisation. Investigators and patients were not masked to treatment assignment. In the R-CHOP50 group, patients were given rituximab 375 mg/m2 intravenously on day 0, cyclophosphamide 750 mg/m2, doxorubicin 50 mg/m2, and vincristine 1·4 mg/m2 (maximum dose 2 mg) intravenously on day 1, and prednisone 60 mg/m2 (maximum dose 100 mg) orally from day 1-5; in the R-CEOP70 group, epirubicin 70 mg/m2 replaced doxorubicin; and in the R-CEOP90 group, high dose epirubicin 90 mg/m2 replaced doxorubicin. All patients received two additional courses of rituximab 375 mg/m2 intravenously every 21 days. Consolidation radiotherapy was given to patients with bulky disease at diagnosis or residual disease at the end of treatment. The primary endpoint was 2-year progression-free survival. The non-inferiority margin for R-CEOP70 versus R-CHOP50 was defined by hazard ratio [HR] as the upper limit of its 95% CI being no greater than 1·50. Analysis of efficacy and safety were of the intention-to-treat population. This study is registered with ClinicalTrials.gov, number NCT01852435. FINDINGS: From May 15, 2013, to March 16, 2016, a total of 648 patients were enrolled, including 404 (62%) young patients (R-CHOP50 [n=135], R-CEOP70 [n=134], or R-CEOP90 [n=135]), and 244 (38%) older patients (R-CHOP50 [n=122] or R-CEOP70 [n=122]). Four patients were excluded from the study for consent withdrawal and one patient for misdiagnosis before treatment. The 2-year progression-free survival in the R-CHOP50 group was 72·5% (95% CI 66·6-77·6) and in the R-CEOP70 group was 72·4% ([66·5-77·5]; HR 1·00 [0·73-1·38]; p=0·99). The non-inferiority was met and adverse events were similar between the two groups. Fewer patients in the R-CEOP70 group (14 [13%] of 110) presented with over 10% decrease in left ventricular ejection fraction (LVEF) than those in the R-CHOP50 group (31 [29%] of 108) at 3 years after remission. For young patients, the 2-year progression-free survival in the R-CEOP90 group was 88·8% (82·1-93·1) and was significantly improved compared with the R-CHOP50 group (75·9% [67·7-82·3]; 0·44 [0·25-0·76]; p=0·0047) and the R-CEOP70 group (77·4% [69·4-83·7%]; 0·49 [0·27-0·86]; p=0·017). Grade 3-4 neutropenia occurred more frequently in the R-CEOP90 group (97 [72%] of 134) than in the R-CHOP50 group (87 [65%] of 133) and R-CEOP70 group (84 [63%] of 133) in young patients but without further increase of clinically significant infections. Fewer patients in the R-CEOP70 group (7 [11%] of 66) and in the R-CEOP90 group (10 [13%] of 79) presented with more than 10% decrease in LVEF than those in the R-CHOP50 group (17 [26%] of 66) at 3 years after remission. INTERPRETATION: R-CEOP70 could serve as an alternative regimen to R-CHOP50 with mild long-term cardiotoxicity. Young patients with diffuse large B-cell lymphoma might benefit from high-dose epirubicin. Epirubicin is an alternative drug to doxorubicin in regular R-CHOP with mild long-term cardiotoxicity. FUNDING: National Natural Science Foundation of China, National Key Research and Development Program, Shanghai Commission of Science and Technology, Shanghai Municipal Education Commission Gaofeng Clinical Medicine Grant Support, Multicenter Clinical Research Project by Shanghai Jiao Tong University School of Medicine, Clinical Research Plan of Shanghai Hospital Development Center, and Chang Jiang Scholars Program.


Assuntos
Antraciclinas/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antraciclinas/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Ciclofosfamida/administração & dosagem , Feminino , Humanos , Linfoma Difuso de Grandes Células B/mortalidade , Linfoma Difuso de Grandes Células B/patologia , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Neutropenia/etiologia , Modelos de Riscos Proporcionais , Rituximab/administração & dosagem , Taxa de Sobrevida , Resultado do Tratamento , Vincristina/administração & dosagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...