Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e1908061, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32530141

RESUMO

With unique valley-dependent optical and optoelectronic properties, 2D transition metal dichalcogenides (2D TMDCs) are promising materials for valleytronics. Second-harmonic generation (SHG) in 2D TMDCs monolayers has shown valley-dependent optical selection rules. However, SHG in monolayer TMDCs is generally weak; it is important to obtain materials with both strong SHG signals and a large degree of polarization. In the work, a variety of inversion-symmetry-breaking (3R-like phase) TMDCs (WSe2 , WS2 , MoS2 ) atomic layers, spiral structures, and heterostructures are prepared, and their SHG polarization is studied. Through circular-polarization-resolved SHG experiments, it is demonstrated that the SHG intensity is enhanced in thicker samples by breaking inversion symmetry while maintaining the degree of polarization close to unity at room temperature. By studying TMDCs with different twist angles and the spiral structures, it is found that there is no significant effect of multilayer interlayer interaction on valley-dependent SHG. The realization of strong SHG with high degree of polarization may pave the way toward a new platform for nonlinear optical valleytronics devices based on 2D semiconductors.

2.
Nano Lett ; 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32134674

RESUMO

Layered two-dimensional transition-metal dichalcogenides (2D-TMDs) are promising building blocks for ultracompact optoelectronic applications. Recently, a strong second harmonic generation (SHG) was observed in spiral stacked TMD nanostructures which was explained by its low crystal symmetry. However, the relationship between the efficiency of SHG signals and the electronic band structure remains unclear. Here, we show that the SHG signal in spiral WS2 nanostructures is strongly enhanced (∼100 fold increase) not only when the second harmonic signal is in resonance with the exciton states but also when the excitation energy is slightly above the electronic band gap, which we attribute to a large interband Berry connection associated with certain optical transitions in spiral WS2. The giant SHG enhancement observed and explained in this study could promote the understanding and utility of TMDs as highly efficient nonlinear optical materials and potentially lead to a new pathway to fabricate more efficient optical energy conversion devices.

3.
Adv Mater ; : e1808319, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32159904

RESUMO

Van der Waals layered semiconductor materials own unique physical properties and have attracted intense interest in developing high-performance electronic and photonic devices. Among them, black phosphorus (BP) is distinct for its layer number-tuned direct band gap which spans from near- to mid-infrared (MIR) waveband. In addition, the puckered honey comb crystal lattice endows the material with highly linear-polarized emission and marked anisotropy in carrier transportation. These unique material properties render BP as an intriguing and promising building block for constructing mid-infrared-ranged coherent light sources. Here, a room temperature surface-emitting MIR laser based on single crystalline BP nanosheets coupled with a distributed Bragg reflector cavity is reported. MIR stimulated emission at 3611 nm is achieved with a near-unity linear polarization, which exhibits robust thermal stability up to 360 K. Most importantly, the lasing wavelength can be tuned from 3425 to 4068 nm by varying the cavity length via thickness control of BP layer. The demonstrated highly polarized lasing output and wavelength-tunable capacity of the proposed device scheme in MIR spectral range opens up promising opportunities for a broad array of applications in polarization-resolved IR imaging, range-finding, and free space quantum communications.

4.
Nat Commun ; 11(1): 617, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001688

RESUMO

Charge separation dynamics after the absorption of a photon is a fundamental process relevant both for photosynthetic reaction centers and artificial solar conversion devices. It has been proposed that quantum coherence plays a role in the formation of charge carriers in organic photovoltaics, but experimental proofs have been lacking. Here we report experimental evidence of coherence in the charge separation process in organic donor/acceptor heterojunctions, in the form of low frequency oscillatory signature in the kinetics of the transient absorption and nonlinear two-dimensional photocurrent spectroscopy. The coherence plays a decisive role in the initial ~200 femtoseconds as we observe distinct experimental signatures of coherent photocurrent generation. This coherent process breaks the energy barrier limitation for charge formation, thus competing with excitation energy transfer. The physics may inspire the design of new photovoltaic materials with high device performance, which explore the quantum effects in the next-generation optoelectronic applications.

5.
ACS Nano ; 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32052962

RESUMO

Nanoscale laser sources with downscaled device footprint, high energy efficiency, and high operation speed are pivotal for a wide array of optoelectronic and nanophotonic applications ranging from on-chip interconnects, nanospectroscopy, and sensing to optical communication. The capability of on-demand lasing output with reversible and continuous wavelength tunability over a broad spectral range enables key functionalities in wavelength-division multiplexing and finely controlled light-matter interaction, which remains an important subject under intense research. In this study, we demonstrate an electrically controlled wavelength-tunable laser based on a CdS nanoribbon (NR) structure. Typical "S"-shaped characteristics of pump power dependence were observed for dominant lasing lines, with concomitant line width narrowing. By applying an increased bias voltage across the NR device, the lasing resonance exhibits a continuous tuning from 510 to 520 nm for a bias field in the range 0-15.4 kV/cm. Systematic bias-dependent absorption and time-resolved photoluminescence (PL) measurements were performed, revealing a red-shifted band edge of gain medium and prolonged PL lifetime with increased electric field over the device. Both current-induced thermal reduction of the band gap and the Franz-Keldysh effect were identified to account for the modification of the lasing profile, with the former factor playing the leading role. Furthermore, dynamical switching of NR lasing was successfully demonstrated, yielding a modulation ratio up to ∼21 dB. The electrically tuned wavelength-reversible CdS NR laser in this work, therefore, presents an important step toward color-selective coherent emitters for future chip-based nanophotonic and optoelectronic circuitry.

6.
Nano Lett ; 19(10): 7217-7225, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31545057

RESUMO

van der Waals multilayer heterostructures have drawn increasing attention due to the potential for achieving high-performance photonic and optoelectronic devices. However, the carrier interlayer transportation behavior in multilayer structures, which is essential for determining the device performance, remains unrevealed. Here, we report a general strategy for studying and manipulating the carrier interlayer transportation in van der Waals multilayers by constructing type-I heterostructures, with a desired narrower bandgap monolayer acting as a carrier extraction layer. For heterostructures comprised of multilayer PbI2 and monolayer WS2, we find similar interlayer diffusion coefficients of ∼0.039 and ∼0.032 cm2 s-1 for electrons and holes in the PbI2 multilayer by fitting the time-resolved carrier dynamics based on the diffusion model. Because of the balanced carrier interlayer diffusion and the injection process at the heterointerface, the photoluminescence emission of the bottom WS2 monolayer is greatly enhanced by up to 106-fold at an optimized PbI2 thickness of the heterostructure. Our results provide valuable information on carrier interlayer transportation in van der Waals multilayer structures and pave the way for utilizing carrier behaviors to improve device performances.

7.
J Am Chem Soc ; 141(30): 11754-11758, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31298855

RESUMO

Atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDCs) are attractive for applications in a wide range of optoelectronic devices, due to their tremendous interesting physical properties. However, the photoluminescence quantum yield (PLQY) of TMDCs has been found to be too low, due to abundant defects and strong many-body effect. Here, we present a direct physical vapor growth of WO3-WS2 bilayer heterostructures, with WO3 monolayer domains attached on the surface of large-size WS2 monolayers. Optical characterizations revealed that the PLQY of the as-grown WO3-WS2 heterostructures can reach up to 11.6%, which is 2 orders of magnitude higher than that of WS2 monolayers by the physical vapor deposition growth method (PVD-WS2) and about 13-times higher than that of mechanical exfoliated WS2 (ME-WS2) monolayers, representing the highest PLQY reported for direct growth TMDCs materials so far. The PL enhancement mechanism has been well investigated by time-resolved optical measurements. The fabrication of WO3-WS2 heterostructures with ultrahigh PLQY provides an efficient approach for the development of highly efficient 2D integrated photonic applications.

8.
ACS Nano ; 13(7): 7996-8003, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31244035

RESUMO

Two-dimensional (2D) atomic layered semiconductor (e.g., transition metal dichalcogenides, TMDCs) heterostructures display diverse novel interfacial carrier properties and have potential applications in constructing next generation highly compact electronics and optoelectronics devices. However, the optoelectronic performance of this kind of semiconductor heterostructures has difficulty reaching the expectations of practical applications, due to the intrinsic weak optical absorption of the atomic-thick component layers. Here, combining the extraordinary optoelectronic properties of quantum-confined organic-inorganic hybrid perovskite (PVK), we design an ultrathin PVK/TMDC vertical semiconductor heterostructure configuration and realize the controlled vapor-phase growth of highly crystalline few-nanometer-thick PVK layers on TMDCs monolayers. The achieved ultrathin PVKs show strong thickness-induced quantum confinement effect, and simultaneously form band alignment-engineered heterointerfaces with the underlying TMDCs, resulting in highly efficient interfacial charge separation and transport. Electrical devices constructed with the as-grown ultrathin PVK/WS2 heterostructures show ambipolar transport originating from p-type PVK and n-type WS2, and exhibit outstanding optoelectronic characteristics, with the optimized response time and photoresponsivity reaching 64 µs and 11174.2 A/W, respectively, both of which are 4 orders of magnitude better than the heterostructures with a thick PVK layer, and also represent the best among all previously reported 2D layered semiconductor heterostructures. This work provides opportunities for 2D vertical semiconductor heterostructures via incorporating ultrathin PVK layers in high-performance integrated optoelectronics.

9.
Nanoscale ; 11(22): 10921-10926, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31139799

RESUMO

Nanostructured ZnO, such as ZnO nanowires (NWs), is a promising material system for a wide range of electronic applications ranging from light emission to water splitting. Utilization of ZnO requires development of effective and controllable p-type doping. Nitrogen is considered among key p-type dopants though the exact origin of N-induced acceptors is not fully understood, especially in the case of nanostructured ZnO. In this work we employ electron paramagnetic resonance (EPR) spectroscopy to characterize N-related acceptors in ZnO NWs. N doping was achieved using ion implantation commonly employed for these purposes. We show that the Fermi level position is lowered in the N implanted NWs, indicating the formation of compensating acceptors. The formed acceptor is unambiguously proven to involve an N atom based on a resolved hyperfine interaction with a 14N nucleus with a nuclear spin I = 1. The revealed center is shown to act as a deep acceptor with an energy level located at about 1.1 eV above the top of the valence band. This work represents the first unambiguous identification of acceptors deliberately introduced in ZnO nanostructures. It also shows that the configuration and electronic structure of the N-related acceptors in nanostructures differ from those in ZnO bulk and thin-films. The present findings are of importance for understanding the electronic properties of nanostructured ZnO required for its future electronic applications.

10.
Nano Lett ; 19(2): 885-890, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30608174

RESUMO

A coherent photon source emitting at near-infrared (NIR) wavelengths is at the heart of a wide variety of applications ranging from telecommunications and optical gas sensing to biological imaging and metrology. NIR-emitting semiconductor nanowires (NWs), acting both as a miniaturized optical resonator and as a photonic gain medium, are among the best-suited nanomaterials to achieve such goals. In this study, we demonstrate the NIR lasing at 1 µm from GaAs/GaNAs/GaAs core/shell/cap dilute nitride nanowires with only 2.5% nitrogen. The achieved lasing is characterized by an S-shape pump-power dependence and narrowing of the emission line width. Through examining the lasing performance from a set of different single NWs, a threshold gain, gth, of 4100-4800 cm-1, was derived with a spontaneous emission coupling factor, ß, up to 0.8, which demonstrates the great potential of such nanophotonic material. The lasing mode was found to arise from the fundamental HE11a mode of the Fabry-Perot cavity from a single NW, exhibiting optical polarization along the NW axis. Based on temperature dependence of the lasing emission, a high characteristic temperature, T0, of 160 (±10) K is estimated. Our results, therefore, demonstrate a promising alternative route to achieve room-temperature NIR NW lasers thanks to the excellent alloy tunability and superior optical performance of such dilute nitride materials.

11.
Nat Commun ; 9(1): 3575, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177701

RESUMO

Owing to their superior optical properties, semiconductor nanopillars/nanowires in one-dimensional (1D) geometry are building blocks for nano-photonics. They also hold potential for efficient polarized spin-light conversion in future spin nano-photonics. Unfortunately, spin generation in 1D systems so far remains inefficient at room temperature. Here we propose an approach that can significantly enhance the radiative efficiency of the electrons with the desired spin while suppressing that with the unwanted spin, which simultaneously ensures strong spin and light polarization. We demonstrate high optical polarization of 20%, inferring high electron spin polarization up to 60% at room temperature in a 1D system based on a GaNAs nanodisk-in-GaAs nanopillar structure, facilitated by spin-dependent recombination via merely 2-3 defects in each nanodisk. Our approach points to a promising direction for realization of an interface for efficient spin-photon quantum information transfer at room temperature-a key element for future spin-photonic applications.

12.
Nat Mater ; 17(8): 703-709, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30013057

RESUMO

The open-circuit voltage of organic solar cells is usually lower than the values achieved in inorganic or perovskite photovoltaic devices with comparable bandgaps. Energy losses during charge separation at the donor-acceptor interface and non-radiative recombination are among the main causes of such voltage losses. Here we combine spectroscopic and quantum-chemistry approaches to identify key rules for minimizing voltage losses: (1) a low energy offset between donor and acceptor molecular states and (2) high photoluminescence yield of the low-gap material in the blend. Following these rules, we present a range of existing and new donor-acceptor systems that combine efficient photocurrent generation with electroluminescence yield up to 0.03%, leading to non-radiative voltage losses as small as 0.21 V. This study provides a rationale to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells.

13.
Nano Lett ; 17(3): 1775-1781, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28170267

RESUMO

Nanowire (NW) lasers operating in the near-infrared spectral range are of significant technological importance for applications in telecommunications, sensing, and medical diagnostics. So far, lasing within this spectral range has been achieved using GaAs/AlGaAs, GaAs/GaAsP, and InGaAs/GaAs core/shell NWs. Another promising III-V material, not yet explored in its lasing capacity, is the dilute nitride GaNAs. In this work, we demonstrate, for the first time, optically pumped lasing from the GaNAs shell of a single GaAs/GaNAs core/shell NW. The characteristic "S"-shaped pump power dependence of the lasing intensity, with the concomitant line width narrowing, is observed, which yields a threshold gain, gth, of 3300 cm-1 and a spontaneous emission coupling factor, ß, of 0.045. The dominant lasing peak is identified to arise from the HE21b cavity mode, as determined from its pronounced emission polarization along the NW axis combined with theoretical calculations of lasing threshold for guided modes inside the nanowire. Even without intentional passivation of the NW surface, the lasing emission can be sustained up to 150 K. This is facilitated by the improved surface quality due to nitrogen incorporation, which partly suppresses the surface-related nonradiative recombination centers via nitridation. Our work therefore represents the first step toward development of room-temperature infrared NW lasers based on dilute nitrides with extended tunability in the lasing wavelength.

14.
Nanotechnology ; 27(42): 425401, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27632684

RESUMO

In this work, we demonstrate homogeneously distributed In0.3Ga0.7N/GaN quantum disks (QDs), with an average diameter below 10 nm and a high density of 2.1 × 10(11) cm(-2), embedded in 20 nm tall nanopillars. The scalable top-down fabrication process involves the use of self-assembled ferritin bio-templates as the etch mask, spin coated on top of a strained In0.3Ga0.7N/GaN single quantum well (SQW) structure, followed by a neutral beam etch (NBE) method. The small dimensions of the iron cores inside ferritin and nearly damage-free process enabled by the NBE jointly contribute to the observation of photoluminescence (PL) from strain-relaxed In0.3Ga0.7N/GaN QDs at 6 K. The large blueshift of the peak wavelength by over 70 nm manifests a strong reduction of the quantum-confined Stark effect (QCSE) within the QD structure, which also agrees well with the theoretical prediction using a 3D Schrödinger equation solver. The current results hence pave the way towards the realization of large-scale III-N quantum structures using the combination of bio-templates and NBE, which is vital for the development of next-generation lighting and communication devices.

15.
Sci Rep ; 5: 11653, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26100755

RESUMO

III-V semiconductor nanowires (NWs) such as GaAs NWs form an interesting artificial materials system promising for applications in advanced optoelectronic and photonic devices, thanks to the advantages offered by the 1D architecture and the possibility to combine it with the main-stream silicon technology. Alloying of GaAs with nitrogen can further enhance performance and extend device functionality via band-structure and lattice engineering. However, due to a large surface-to-volume ratio, III-V NWs suffer from severe non-radiative carrier recombination at/near NWs surfaces that significantly degrades optical quality. Here we show that increasing nitrogen composition in novel GaAs/GaNAs core/shell NWs can strongly suppress the detrimental surface recombination. This conclusion is based on our experimental finding that lifetimes of photo-generated free excitons and free carriers increase with increasing N composition, as revealed from our time-resolved photoluminescence (PL) studies. This is accompanied by a sizable enhancement in the PL intensity of the GaAs/GaNAs core/shell NWs at room temperature. The observed N-induced suppression of the surface recombination is concluded to be a result of an N-induced modification of the surface states that are responsible for the nonradiative recombination. Our results, therefore, demonstrate the great potential of incorporating GaNAs in III-V NWs to achieve efficient nano-scale light emitters.

16.
Nanoscale Res Lett ; 8(1): 239, 2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-23680085

RESUMO

Recombination processes in GaP/GaNP core/shell nanowires (NWs) grown on Si are studied by employing temperature-dependent continuous wave and time-resolved photoluminescence (PL) spectroscopies. The NWs exhibit bright PL emissions due to radiative carrier recombination in the GaNP shell. Though the radiative efficiency of the NWs is found to decrease with increasing temperature, the PL emission remains intense even at room temperature. Two thermal quenching processes of the PL emission are found to be responsible for the degradation of the PL intensity at elevated temperatures: (a) thermal activation of the localized excitons from the N-related localized states and (b) activation of a competing non-radiative recombination (NRR) process. The activation energy of the latter process is determined as being around 180 meV. NRR is also found to cause a significant decrease of carrier lifetime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA