Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 914
Filtrar
1.
J Proteomics ; 251: 104423, 2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-34775098

RESUMO

Reactive oxygen species (ROS) play a crucial role as signaling molecules in plant responses to pathogen infection. It is highly reactive with cellular components such as DNA, lipids and proteins, thereby leading to serious oxidative damages. Cysteine residues are sensitive targets of ROS in a post-translational modification known as sulfenylation. However, during plant-pathogen interaction, it is still unclear which specific proteins can be oxidized by ROS and undergo sulfenic modification to regulate the interaction process. Here, we observed a biphasic production of ROS in Nicotiana benthamiana after inoculation with Botrytis cinerea. RT-qPCR results showed that the biphasic increase in ROS production was closely related to the expression of NbRbohA, NbRbohB and NbRbohC. Furthermore, a ROS-dependent sulfenome analysis was performed and finally 183 differentially sulfenylated proteins were identified. Their post-translational sulfenylation modification in response to B. cinerea infection was further confirmed by western blot and mass spectrometry analysis. Virus-induced gene silencing of those genes encoding sulfenylated proteins resulted in reduced resistance to B. cinerea. Taken together, our data demonstrate that B. cinerea infection induces ROS burst in N. benthamiana, which triggers protein sulfenylation to ensure the transduction of ROS signals and further function in plant-pathogen interaction. SIGNIFICANCE: Reactive oxygen species (ROS) induced by Botrytis cinerea infection trigger changes in cellular redox status through protein sulfenylation to be involved in plant-pathogen interaction.

2.
J Hazard Mater ; 421: 126822, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34396972

RESUMO

Antibiotic mycelial dregs (AMDs) have been listed as industrial hazardous wastes. With the aim of reducing the environmental risk, the integrated-omics and qPCR approaches were used to reveal the dynamics and removal mechanisms of antibiotic and antibiotic resistance genes (ARGs) during the fermentation of different spectinomycin mycelial dregs (SMDs). The results showed that the removal efficiency of antibiotic in the fermentation of high moisture SMDs reached up to 98%. The high abundance of aadA1 gene encoded by Streptomyces, Lactobacillus, and Pseudomonas was associated with the efficient degradation of spectinomycin, and the inactivating enzymes secreted by degradative bacteria were identified. Furthermore, the dominant microbiota was impacted by moisture content significantly under high temperature environments. In the fermentation of low moisture SMDs, Saccharopolyspora was the dominant microbiota which secreted S8 endopeptidase, M14, M15, S10, S13 carboxypeptidases, M1, M28, S15 aminopeptidases, and antioxidant enzymes, while in the fermentation of high moisture SMDs, Bacillus and Cerasibacillus were dominant genera which mainly secreted S8 endopeptidase and antioxidant enzymes. The abundance of ARGs and mobile genetic elements decreased significantly at thermophilic phase, with maximum drops of 93.7% and 99.9%, respectively. Maintaining moisture content below 30% at the end phase could prevent the transmission of ARGs effectively.


Assuntos
Antibacterianos , Espectinomicina , Resistência Microbiana a Medicamentos/genética , Fermentação , Genes Bacterianos
4.
Acta Pharm Sin B ; 11(10): 3310-3321, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34729318

RESUMO

Aconitum carmichaelii is a high-value medicinal herb widely used across China, Japan, and other Asian countries. Aconitine-type diterpene alkaloids (DAs) are the characteristic compounds in Aconitum. Although six transcriptomes, based on short-read next generation sequencing technology, have been reported from the Aconitum species, the terpene synthase (TPS) corresponding to DAs biosynthesis remains unidentified. We apply a combination of Pacbio isoform sequencing and RNA sequencing to provide a comprehensive view of the A. carmichaelii transcriptome. Nineteen TPSs and five alternative splicing isoforms belonging to TPS-b, TPS-c, and TPS-e/f subfamilies were identified. In vitro enzyme reaction analysis functional identified two sesqui-TPSs and twelve diTPSs. Seven of the TPS-c subfamily genes reacted with GGPP to produce the intermediate ent-copalyl diphosphate. Five AcKSLs separately reacted with ent-CPP to produce ent-kaurene, ent-atiserene, and ent-13-epi-sandaracopimaradie: a new diterpene found in Aconitum. AcTPSs gene expression in conjunction DAs content analysis in different tissues validated that ent-CPP is the sole precursor to all DAs biosynthesis, with AcKSL1, AcKSL2s and AcKSL3-1 responsible for C20 atisine and napelline type DAs biosynthesis, respectively. These data clarified the molecular basis for the C20-DAs biosynthetic pathway in A. carmichaelii and pave the way for further exploration of C19-DAs biosynthesis in the Aconitum species.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34789405

RESUMO

Intracellular viscosity, an important microenvironment factor, is closely involved in various cell processes as well as diseases. On the other hand, cyanide is one of the most hazardous chemicals for human health and environments. However, a NIR fluorescent probe for both response to viscosity and detection of cyanide remains vacant. Herein, we reported a D-π-A structure fluorophore (named CTR) which exhibited NIR emission and fluorescent enhancement response to viscosity via the molecular rotor strategy. Furthermore, CTR displayed fluorescent and colorimetric response to cyanide. Notably, test strips stained with CTR were fabricated, which could serve as an efficient and suitable cyanide test kit. Moreover, CTR could selectively accumulate in lipid droplets and visualize the metabolism of lipid droplets in live cells. These findings would provide new avenue to design fluorescent probe for effective response to viscosity, detection of cyanide, and bioimaging of lipid droplets in live cells.

6.
Nanotechnology ; 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34847539

RESUMO

Insufficient reduction capability and scanty active substance limit the application of LaFeO3 (LFO) in the field of photoelectrochemical (PEC) water splitting. In this work, a judicious combination of LFO/Nafion composite to improve the PEC performance by a special dip-coating method on the FTO is demonstrated. The photocurrent density of the LFO electrode coated with two layers Nafion increased to -23.9 µA/cm2 at 0.47 V vs RHE, which is 4.1 times that of the pristine LFO. Based on the experimental data and theoretical analysis,the improvement of the PECproperties is attributed to the construction of organic/inorganic units, which would enable strong electronic coupling and favor interfacial charge transfer, resulting in a 30mV downward shift of its flat band potential. Thus, conduction band gets closer to the proton reduction potential of H+ to H2 after decoration with Nafion, resulting in stronger photogenerated electron reduction ability. Our study provides insights that organic materials modify semiconductor photoelectrodes for accelerating the charge kinetics.

7.
Chem Biodivers ; 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34817123

RESUMO

This study aims to establish the isolation and purification method of polysaccharides from medicinal residue of Panax notoginseng (PPN). The structure and protective effect of PPN on myelosuppression mice were investigated. One neutral polysaccharide (NPPN) and five acidic polysaccharides (APPN I, APPN II-A, APPNII-B, APPN III-A, and APPN III-B) were obtained. The results confirmed that NPPN, APPN I and APPN II-A are glycan with 1, 4 main chains. APPN III-A is a glycan. APPN II-B and APPN III-B are homogalacturonan pectin with 1, 4 main chains. This study demonstrated that NPPN played a bone marrow protective role in myelosuppression mice induced by cyclophosphamide. NPPN could relieve cell cycle arrest, reduce the apoptosis rate of marrow cells, and improve granulocyte-macrophage colony-stimulating (GM-CSF), thermoplastic polyolefin (TPO) and erythropoietin (EPO) serum level, which contributes to promoting the proliferation of hematopoietic cells.

9.
Biomark Res ; 9(1): 72, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34625124

RESUMO

Tumor-associated macrophages (TAMs), at the core of immunosuppressive cells and cytokines networks, play a crucial role in tumor immune evasion. Increasing evidences suggest that potential mechanisms of macrophage-mediated tumor immune escape imply interpretation and breakthrough to bottleneck of current tumor immunotherapy. Therefore, it is pivotal to understand the interactions between macrophages and other immune cells and factors for enhancing existing anti-cancer treatments. In this review, we focus on the specific signaling pathways through which TAMs involve in tumor antigen recognition disorders, recruitment and function of immunosuppressive cells, secretion of immunosuppressive cytokines, crosstalk with immune checkpoints and formation of immune privileged sites. Furthermore, we summarize correlative pre-clinical and clinical studies to provide new ideas for immunotherapy. From our perspective, macrophage-targeted therapy is expected to be the next frontier of cancer immunotherapy.

10.
Antioxidants (Basel) ; 10(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34679735

RESUMO

Colorectal cancer (CRC) is still a big health burden worldwide. Nutrition and dietary factors are known to affect colorectal cancer development and prognosis. The protective roles of diets rich in fruits and vegetables have been previously reported to contain high levels of cancer-fighting phytochemicals. Anthocyanins are the most abundant flavonoid compounds that are responsible for the bright colors of most blue, purple, and red fruits and vegetables, and have been shown to contribute to the protective effects of fruits and vegetables against cancer and other chronic diseases. Berries and grapes are the most common anthocyanin-rich fruits with antitumor effects. The antitumor effects of anthocyanins are determined by their structures and bioavailability as well as how they are metabolized. In this review, we aimed to discuss the preventive as well as therapeutic potentials of anthocyanins in CRC. We summarized the antitumor effects of anthocyanins and the mechanisms of action. We also discussed the potential pharmaceutical application of anthocyanins in practice.

11.
Oxid Med Cell Longev ; 2021: 4539453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621464

RESUMO

Mesenchymal stem cells (MSCs) are the most exploited stem cells with multilineage differentiation potential and immunomodulatory properties. Numerous lines of findings have reported their successful applications in a multitude of inflammatory conditions and immune disorders. However, it is currently discovered that these effects are mainly mediated in a paracrine manner by MSC-exosomes. Moreover, MSC-exosomes have been implicated in a wide variety of biological responses including immunomodulation, oxidative stress, tumor progression, and tissue regeneration. Meanwhile, they are reported to actively participate in various hematological diseases by the means of transferring different types of exosomal components to the target cells. Therefore, in this review, we briefly discuss the sources and biological features of MSCs and then illustrate the biogenesis and biological processes of MSC-exosomes. Of note, this paper especially highlights the latest research progress of MSC-exosomes in hematological diseases.

12.
Artigo em Inglês | MEDLINE | ID: mdl-34665744

RESUMO

Due to the sparsity of available features in web-scale predictive analytics, combinatorial features become a crucial means for deriving accurate predictions. As a well-established approach, a factorization machine (FM) is capable of automatically learning high-order interactions among features to make predictions without the need for manual feature engineering. With the prominent development of deep neural networks (DNNs), there is a recent and ongoing trend of enhancing the expressiveness of FM-based models with DNNs. However, though better results are obtained with DNN-based FM variants, such performance gain is paid off by an enormous amount (usually millions) of excessive model parameters on top of the plain FM. Consequently, the heavy parameterization impedes the real-life practicality of those deep models, especially efficient deployment on resource-constrained Internet of Things (IoT) and edge devices. In this article, we move beyond the traditional real space where most deep FM-based models are defined and seek solutions from quaternion representations within the hypercomplex space. Specifically, we propose the quaternion factorization machine (QFM) and quaternion neural factorization machine (QNFM), which are two novel lightweight and memory-efficient quaternion-valued models for sparse predictive analytics. By introducing a brand new take on FM-based models with the notion of quaternion algebra, our models not only enable expressive inter-component feature interactions but also significantly reduce the parameter size due to lower degrees of freedom in the hypercomplex Hamilton product compared with real-valued matrix multiplication. Extensive experimental results on three large-scale datasets demonstrate that QFM achieves 4.36% performance improvement over the plain FM without introducing any extra parameters, while QNFM outperforms all baselines with up to two magnitudes' parameter size reduction in comparison to state-of-the-art peer methods.

13.
PLoS One ; 16(10): e0257844, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34618813

RESUMO

Rapid development of intelligent information equipment accelerates the expansion of mobile social network. Speed of information spreading is gradually growing, there are lots of changes in the scale and mode of information spreading. But the basic communication network is not developed and not mature, when online information platforms breakdown sometimes it happens to be when important information appears. Therefore, the research is done to solve these occasion problems, help network information platform filter hot news and discuss the reason that hot news exists longer than other news in the Internet. In this paper, a multiple information propagation model incorporating both local information environment and people's limited attention is proposed based on Susceptible Infected Recovered (SIR) model. Two new concepts are introduced into the model: heat rate and popular rate, to measure the local information influence power and people's limited attention to information respectively, which are key factors determining node state transformation instead of fixed probability. In order to analyze the influence from limited attention, a situation is designed that several pieces of information are popular successively. The theoretical analysis shows that the early popular information gets more attention than the later popular information, and more attention makes it easier to spread. Besides, numerical simulation is conducted in both uniform network and scale-free network. The simulation results show that the early popular information is less vulnerable to the increase of information acceptance threshold and more sensitive to the decrease of information rejection threshold than the later popular information. Moreover, the model can also be used in the case of large amount of information transmission without adding too much complexity. Reasons are given in the research that the top hot news exists very much longer than the other ones, and latter news which have same influence as top news are hard to get the same focus. Meanwhile, results in the research can provide some ways for the other researches in the related fields. They also help related information platforms to filter and push news and referable strategies to maintain hot news.


Assuntos
Disseminação de Informação/métodos , Internet , Mídias Sociais , Rede Social , Atenção , Humanos
14.
Front Oncol ; 11: 660242, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513664

RESUMO

Background: Recent years, the global prevalence of breast cancer (BC) was still high and the underlying molecular mechanisms remained largely unknown. The investigation of prognosis-related biomarkers had become an urgent demand. Results: In this study, gene expression profiles and clinical information of breast cancer patients were downloaded from the TCGA database. The differentially expressed genes (DEGs) were estimated by Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. A risk score formula involving five novel prognostic associated biomarkers (EDN2, CLEC3B, SV2C, WT1, and MUC2) were then constructed by LASSO. The prognostic value of the risk model was further confirmed in the TCGA entire cohort and an independent external validation cohort. To explore the biological functions of the selected genes, in vitro assays were performed, indicating that these novel biomarkers could markedly influence breast cancer progression. Conclusions: We established a predictive five-gene signature, which could be helpful for a personalized management in breast cancer patients.

15.
Ann Transl Med ; 9(16): 1292, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34532429

RESUMO

Background: Restenosis is one of the worst side effects of percutaneous coronary intervention (PCI) due to neointima formation resulting from the excessive proliferation and migration of vascular smooth muscle cells (VSMCs) and continuous inflammation. Biodegradable Mg-based alloy is a promising candidate material because of its good mechanical properties and biocompatibility, and biodegradation of cardiovascular stents. Although studies have shown reduced neointima formation after Mg-based CVS implantation in vivo, these findings were inconsistent with in vitro studies, demonstrating magnesium-mediated promotion of the proliferation and migration of VSMCs. Given the vital role of activated macrophage-driven inflammation in neointima formation, along with the well-demonstrated crosstalk between macrophages and VSMCs, we investigated the interactions of a biodegradable Mg-Nd-Zn-Zr alloy (denoted JDBM), which is especially important for cardiovascular stents, with VSMCs via macrophages. Methods: JDBM extracts and MgCl2 solutions were prepared to study their effect on macrophages. To study the effects of the JDBM extracts and MgCl2 solutions on the function of VSMCs via immunoregulation of macrophages, conditioned media (CM) obtained from macrophages was used to establish a VSMC-macrophage indirect coculture system. Results: Our results showed that both JDBM extracts and MgCl2 solutions significantly attenuated the inflammatory response stimulated by lipopolysaccharide (LPS)-activated macrophages and converted macrophages into M2-type cells. In addition, JDBM extracts and MgCl2 solutions significantly decreased the expression of genes related to VSMC phenotypic switching, migration, and proliferation in macrophages. Furthermore, the proliferation, migration, and proinflammatory phenotypic switching of VSMCs were significantly inhibited when the cells were incubated with CMs from macrophages treated with LPS + extracts or LPS + MgCl2 solutions. Conclusions: Taken together, our results suggested that the magnesium in the JDBM extract could affect the functions of VSMCs through macrophage-mediated immunoregulation, inhibiting smooth muscle hyperproliferation to suppress restenosis after implantation of a biodegradable Mg-based stent.

16.
Environ Res ; 204(Pt B): 112035, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34509483

RESUMO

Activated carbon is commonly used to remove dioxins from flue gas via adsorption. Improving the targeted adsorption capacity of activated carbon for dioxins can reduce the consumption of adsorbents and help achieve emission standards for target pollutants. Here, commercial coal-based activated carbon was used as a raw material and modified by urea impregnation along with treatment at high temperature under a nitrogen atmosphere. It was found that modification with urea effectively improved the pore structure of activated carbon while incorporating a certain amount of nitrogen. The best modification effect was achieved at a modification temperature of 600 °C, an impregnation ratio of urea to activated carbon of 1:1, and with high-temperature treatment for 2 h. The mesopore volume of the modified activated carbon (AC600) reached 0.38 cm3/g, accounting for 57.58% of the total pore volume. With an impregnation ratio of urea to activated carbon of 1:1, high-temperature treatment for 2 h, and a modification temperature of 800 °C, a certain amount of nitrogen was introduced into the carbon rings to form a modified activated carbon (AC800) rich in pyridine and pyrrole groups (atomic percentage = 4.84%). The activated carbon modified by urea and the unmodified activated carbon were subsequently selected for dioxin adsorption experiments using a dioxin generation and adsorption system. AC600 showed the highest adsorption efficiency for dioxins, reaching 97.65%, based on toxicity equivalents. Although AC800 has poor pore properties, it has more pyridine and pyrrole groups than AC600. Consequently, the efficiency of AC800 at adsorbing low-concentration dioxins reached 85.24% based on toxicity equivalents. Overall, this study describes two mechanisms for effectively modifying activated carbon with urea based on (1) optimizing the pore structure of activated carbon and (2) incorporating nitrogen.

17.
Medicine (Baltimore) ; 100(35): e27104, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34477149

RESUMO

ABSTRACT: To evaluate the diagnostic values of shear wave elastography (SWE) alone and in combination with the Toronto clinical scoring system (TCSS) on diabetic peripheral neuropathy (DPN) in patients with type 2 diabetes mellitus (T2DM).The study included 41 DPN patients, 42 non-DPN patients, and 21 healthy volunteers. Conventional ultrasonography and SWE were performed on the 2 sides of the tibial nerves, and cross-sectional area (CSA) and nerve stiffness were measured. TCSS was applied to all patients. A receiver operating characteristic curve analysis was performed.The stiffness of the tibial nerve, as measured as mean, minimum or maximum elasticity, was significantly higher in patients in the DPN group than the other groups (P < .05). The tibial nerve of subjects in the non-DPN group was significantly stiffer compared to the control group (P < .05). There was no significant difference of the tibial nerve CSA among the 3 groups (P > .05). Mean elasticity of the tibial nerve with a cutoff of 71.3 kPa was the most sensitive (68.3%) and had a higher area under the curve (0.712; 0.602-0.806) among the 3 shear elasticity indices for diagnosing DPN when used alone. When combining SWE with TCSS in diagnosing DPN, the most effective parameter was the EMax, which yielded a sensitivity of 100.00% and a specificity of 95.24%.SWE is a better diagnostic tool for DPN than the conventional ultrasonic parameter CSA, and a higher diagnostic value is attained when combining SWE with TCSS.


Assuntos
Nefropatias Diabéticas/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/normas , Projetos de Pesquisa , Idoso , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/fisiopatologia , Nefropatias Diabéticas/complicações , Técnicas de Imagem por Elasticidade/métodos , Técnicas de Imagem por Elasticidade/estatística & dados numéricos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso Periférico/classificação , Doenças do Sistema Nervoso Periférico/diagnóstico por imagem , Curva ROC , Reprodutibilidade dos Testes
18.
Talanta ; 235: 122795, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517653

RESUMO

In order to solve the problems of using a large proportion of acetonitrile on the hydrophilic interaction liquid chromatography (HILIC) columns that was not environmentally friendly, and the poor acid and base resistance of traditional bonded silica columns, we reported a novel stationary phase of Au nanoparticles (Au NPs) covalently bonded to ionic liquid (ILs) bridged periodic mesoporous organosilicas (PMO) hydrophilic microspheres (PMO-ILs-Au NPs) for per aqueous liquid chromatography (PALC). The PMO hydrophilic microspheres were prepared by condensation of 1,3-bis(trimethoxysilylpropyl)imidazoliumchloride and 1, 2-Bis (triethoxysilyl) ethane and then modified with Au NPs the surface. The obtained materials were characterized by elemental analysis, FT-IR spectra, scanning electron microscope and transmission electron microscopy. The retention behavior was evaluated by investigating the effect of various chromatographic factors on the retention of different types of solutes. The retention mechanism of the stationary phases in PALC was a mixed type of anion-exchange and hydrophobic interaction. Compared with C18-SiO2 column, the acid and base resistance of the stationary phase were greatly improved. Compared with the HILIC column and C18 column, some hydrophilic compounds such as six organic acids and eight biogenic amines were baseline separated with the enhanced resolution of the PMO-ILs-Au NPs column under the PALC mode. The efficiency of the new column was significantly higher than that of the HILIC column. Furthermore, the analysis of PALC-triple quadrupole mass spectrometry was developed for simultaneous detection of eight biogenic amines. This method could improve detection efficiency, save reagent and reduce environmental pollution. PALC as a green chromatography analytical method was suitable for the replacement of HILIC.


Assuntos
Líquidos Iônicos , Nanopartículas Metálicas , Aminas Biogênicas , Cromatografia Líquida , Ouro , Interações Hidrofóbicas e Hidrofílicas , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier
19.
ACS Omega ; 6(37): 24156-24165, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34568694

RESUMO

Plasma-assisted ignition and combustion are promising approaches for controlling ignition enhancement and flame stabilization. The global loosely coupled plasma-assisted combustion kinetic model has been established by combining the ZDPlasKin and ChemKin codes, which is employed to numerically investigate the effects of the inert gas-diluted methane-air nanosecond repetitively pulsed (NRP) plasma on the ignition process. The results indicate that addition of the inert gas is conducive to increasing the chemical reactive species densities in the methane-air NRP discharge plasma. The addition of inert gases affects the generation pathways of plasma species and their corresponding contribution rates. Compared with the methane-air plasma, the dilution of inert gases shows obvious effects on reducing ignition delays, and the dilution of He and Ar decreases the ignition delays by 58.0 and 84.0%, respectively. CH3 + O2 = CH3O + O and H + O2 = O + OH are the dominant conducive reactions in the methane-air ignition chemistry. Moreover, the dilution of inert gases has considerable influences on the normalization sensitivity coefficients, especially for the reaction of H + O2 = O + OH.

20.
Front Cell Dev Biol ; 9: 655703, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422793

RESUMO

Hepatoblastoma (HB) is a rare disease but nevertheless the most common hepatic tumor in the pediatric population. For patients with advanced HB, the prognosis is dismal and there are limited therapeutic options. Multiple microRNAs (miRNAs) were reported to be involved in HB development, but the miRNA-mRNA interaction network in HB remains elusive. Through a comparison between HB and normal liver samples in the GSE131329 dataset, we detected 580 upregulated differentially expressed mRNAs (DE-mRNAs) and 790 downregulated DE-mRNAs. As for the GSE153089 dataset, the first cluster of differentially expressed miRNAs (DE-miRNAs) were detected between fetal-type tumor and normal liver groups, while the second cluster of DE-miRNAs were detected between embryonal-type tumor and normal liver groups. Through the intersection of these two clusters of DE-miRNAs, 33 upregulated hub miRNAs, and 12 downregulated hub miRNAs were obtained. Based on the respective hub miRNAs, the upstream transcription factors (TFs) were detected via TransmiR v2.0, while the downstream target genes were predicted via miRNet database. The intersection of target genes of respective hub miRNAs and corresponding DE-mRNAs contributed to 250 downregulated candidate genes and 202 upregulated candidate genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses demonstrated the upregulated candidate genes mainly enriched in the terms and pathways relating to the cell cycle. We constructed protein-protein interaction (PPI) network, and obtained 211 node pairs for the downregulated candidate genes and 157 node pairs for the upregulated candidate genes. Cytoscape software was applied for visualizing the PPI network and respective top 10 hub genes were identified using CytoHubba. The expression values of hub genes in the PPI network were subsequently validated through Oncopression database followed by quantitative real-time polymerase chain reaction (qRT-PCR) in HB and matched normal liver tissues, resulting in six significant downregulated genes and seven significant upregulated genes. The miRNA-mRNA interaction network was finally constructed. In conclusion, we uncover various miRNAs, TFs, and hub genes as potential regulators in HB pathogenesis. Additionally, the miRNA-mRNA interaction network, PPI modules, and pathways may provide potential biomarkers for future HB theranostics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...