Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Filtros adicionais











Tipo de estudo
Intervalo de ano
1.
J Biol Chem ; 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30425099

RESUMO

LATERAL ORGAN BOUNDARIES DOMAIN (LBD) proteins, a family of plant-specific transcription factors harboring a conserved LOB domain, are regulators of plant organ development. Recent studies have unraveled additional pivotal roles of the LBD protein family beyond defining lateral organ boundaries, such as pollen development and nitrogen metabolism. The structural basis for the molecular network of LBD-dependent processes remains to be deciphered. Here, we solved the first structure of the homodimeric LOB domain of Ramosa2 from wheat (TtRa2LD) to 1.9 Å resolution. Our crystal structure reveals structural features shared with other zinc-finger transcriptional factors, as well as some features unique to LBD proteins. Formation of the TtRa2LD homodimer relied on hydrophobic interactions of its coiled-coil motifs. Several specific motifs/domains of the LBD protein were also involved in maintaining its overall conformation. The intricate assembly within and between the monomers determined the precise spatial configuration of the two zinc fingers that recognize palindromic DNA sequences. Biochemical, molecular modeling, and small-angle X-ray scattering (SAXS) experiments indicated that dimerization is important for cooperative DNA binding and discrimination of palindromic DNA through a molecular calipers mechanism. Along with previously published data, this study enables us to establish an atomic-scale mechanistic model for LBD proteins as transcriptional regulators in plants.

2.
Biochem Biophys Res Commun ; 504(1): 334-339, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30190128

RESUMO

RNA helicases are almost ubiquitous important enzymes that take part in multiple aspects of RNA metabolism. Prokaryotes encode fewer RNA helicases than eukaryotes, suggesting that individual prokaryotic RNA helicases may take on multiple roles. The specific functions and molecular mechanisms of bacterial DEAH/RHA helicases are poorly understood, and no structures are available of these bacterial enzymes. Here, we report the first crystal structure of the DEAH/RHA helicase HrpB of Escherichia coli in a complex with ADP•AlF4. It showed an atypical globular structure, consisting of two RecA domains, an HA2 domain and an OB domain, similar to eukaryotic DEAH/RHA helicases. Notably, it showed a unique C-terminal extension that has never been reported before. Activity assays indicated that EcHrpB binds RNA but not DNA, and does not exhibit unwinding activity in vitro. Thus, within cells, the EcHrpB may function in helicase activity-independent RNA metabolic processes.

3.
Structure ; 26(3): 403-415.e4, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29429875

RESUMO

Helicase DHX36 plays essential roles in cell development and differentiation at least partially by resolving G-quadruplex (G4) structures. Here we report crystal structures of the Drosophila homolog of DHX36 (DmDHX36) in complex with RNA and a series of DNAs. By combining structural, small-angle X-ray scattering, molecular dynamics simulation, and single-molecule fluorescence studies, we revealed that positively charged amino acids in RecA2 and OB-like domains constitute an elaborate structural pocket at the nucleic acid entrance, in which negatively charged G4 DNA is tightly bound and partially destabilized. The G4 DNA is then completely unfolded through the 3'-5' translocation activity of the helicase. Furthermore, crystal structures and DNA binding assays show that G-rich DNA is preferentially recognized and in the presence of ATP, specifically bound by DmDHX36, which may cooperatively enhance the G-rich DNA translocation and G4 unfolding. On the basis of these results, a conceptual G4 DNA-resolving mechanism is proposed.

4.
Nucleic Acids Res ; 46(3): 1486-1500, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29202194

RESUMO

The Saccharomyces cerevisiae Pif1 protein (ScPif1p) is the prototypical member of the Pif1 family of DNA helicases. ScPif1p is involved in the maintenance of mitochondrial, ribosomal and telomeric DNA and suppresses genome instability at G-quadruplex motifs. Here, we report the crystal structures of a truncated ScPif1p (ScPif1p237-780) in complex with different ssDNAs. Our results have revealed that a yeast-specific insertion domain protruding from the 2B domain folds as a bundle bearing an α-helix, α16. The α16 helix regulates the helicase activities of ScPif1p through interactions with the previously identified loop3. Furthermore, a biologically relevant dimeric structure has been identified, which can be further specifically stabilized by G-quadruplex DNA. Basing on structural analyses and mutational studies with DNA binding and unwinding assays, a potential G-quadruplex DNA binding site in ScPif1p monomers is suggested. Our results also show that ScPif1p uses the Q-motif to preferentially hydrolyze ATP, and a G-rich tract is preferentially recognized by more residues, consistent with previous biochemical observations. These findings provide a structural and mechanistic basis for understanding the multifunctional ScPif1p.

6.
J Biol Chem ; 292(14): 5909-5920, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28228481

RESUMO

Helicases play a critical role in processes such as replication or recombination by unwinding double-stranded DNA; mutations of these genes can therefore have devastating biological consequences. In humans, mutations in genes of three members of the RecQ family helicases (blm, wrn, and recq4) give rise to three strikingly distinctive clinical phenotypes: Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome, respectively. However, the molecular basis for these varying phenotypic outcomes is unclear, in part because a full mechanistic description of helicase activity is lacking. Because the helicase core domains are highly conserved, it has been postulated that functional differences among family members might be explained by significant differences in the N-terminal domains, but these domains are poorly characterized. To help fill this gap, we now describe bioinformatics, biochemical, and structural data for three vertebrate BLM proteins. We pair high resolution crystal structures with SAXS analysis to describe an internal, highly conserved sequence we term the dimerization helical bundle in N-terminal domain (DHBN). We show that, despite the N-terminal domain being loosely structured and potentially lacking a defined three-dimensional structure in general, the DHBN exists as a dimeric structure required for higher order oligomer assembly. Interestingly, the unwinding amplitude and rate decrease as BLM is assembled from dimer into hexamer, and also, the stable DHBN dimer can be dissociated upon ATP hydrolysis. Thus, the structural and biochemical characterizations of N-terminal domains will provide new insights into how the N-terminal domain affects the structural and functional organization of the full BLM molecule.


Assuntos
Trifosfato de Adenosina/química , Proteínas Aviárias/química , Galinhas , Multimerização Proteica , RecQ Helicases/química , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Cristalografia por Raios X , Domínios Proteicos , Estrutura Quaternária de Proteína , RecQ Helicases/genética , RecQ Helicases/metabolismo
7.
Nucleic Acids Res ; 44(6): 2949-61, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26809678

RESUMO

Pif1 helicases are ubiquitous members of the SF1B family and are essential for maintaining genome stability. It was speculated that Pif1-specific motifs may fold in specific structures, conferring distinct activities upon it. Here, we report the crystal structures of the Pif1 helicase from Bacteroides spp with and without adenosine triphosphate (ATP) analog/ssDNA. BsPif1 shares structural similarities with RecD2 and Dda helicases but has specific features in the 1B and 2B domains. The highly conserved Pif1 family specific sequence motif interacts with and constraints a putative pin-loop in domain 1B in a precise conformation. More importantly, we found that the 2B domain which contains a specific extended hairpin undergoes a significant rotation and/or movement upon ATP and DNA binding, which is absolutely required for DNA unwinding. We therefore propose a mechanism for DNA unwinding in which the 2B domain plays a predominant role. The fact that the conformational change regulates Pif1 activity may provide insight into the puzzling observation that Pif1 becomes highly processive during break-induced replication in association with Polδ, while the isolated Pif1 has low processivity.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Bacteroides/química , DNA Helicases/química , DNA de Cadeia Simples/química , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroides/enzimologia , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Polimerase III/química , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , DNA de Cadeia Simples/metabolismo , Expressão Gênica , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA