RESUMO
In this study, biochar produced from sunflower seeds husk was activated through ZnCl2 to support the NiCo2O4 nanoparticles (NiCo2O4@ZSF) in catalytic activation of peroxymonosulfate (PMS) toward tetracycline (TC) removal from aqueous solution. The good dispersion of NiCo2O4 NPs on the ZSF surface provided sufficient active sites and abundant functional groups for the adsorption and catalytic reaction. The NiCo2O4@ZSF activating PMS showed high removal efficiency up to 99% after 30 min under optimal condition ([NiCo2O4@ZSF] = 25 mg L-1, [PMS] = 0.04 mM, [TC] = 0.02 mM and pH = 7). The catalyst also exhibited good adsorption performance with a maximum adsorption capacity of 322.58 mg g-1. Sulfate radicals (SO4â¢-), superoxide radical (O2â¢-), and singlet oxygen (1O2) played a decisive role in the NiCo2O4@ZSF/PMS system. In conclusion, our research elucidated the production of highly efficient carbon-based catalysts for environmental remediation, and also emphasized the potential application of NiCo2O4 doped biochar.
RESUMO
Microalgae are currently not viable as solid biofuels owing to their poor raw fuel properties. Torrefaction under oxidative media offers a cost-effective and energy-efficient process to address these drawbacks. A design of experiment was conducted using central composite design with three factors: temperature (200, 250, and 300 °C), time (10, 35, and 60 min), and O2 concentration (3, 12, and 21 vol%). The responses were solid yield, energy yield, higher heating value, and onset temperatures at 50% and 90% carbon conversion determined from thermogravimetric analysis. Temperature and time significantly affected all responses, while O2 concentration only affected higher heating value, energy yield and thermodegradation temperature at 90% conversion. Oxidative torrefaction of microalgae is recommended to be conducted at 200 °C, 10.6 min, 12% O2 where the energy yield and enhancement factor are 98.73% and 1.08, respectively. It is also more reactive under an air environment compared to inert torrefaction conditions.
RESUMO
A liquid-based surface-enhanced Raman spectroscopy assay termed PSALM is developed for the selective sensing of neurotransmitters (NTs) with a limit of detection below the physiological range of NT concentrations in urine. This assay is formed by quick and simple nanoparticle (NP) "mix-and-measure" protocols, in which FeIII bridges NTs and gold NPs inside the sensing hotspots. Detection limits of NTs from PreNP PSALM are significantly lower than those of PostNP PSALM, when urine is pretreated by affinity separation. Optimized PSALM enables the long-term monitoring of NT variation in urine in conventional settings for the first time, allowing the development of NTs as predictive or correlative biomarkers for clinical diagnosis.
RESUMO
Three waves of hematopoiesis occur in the mouse embryo. The primitive hematopoiesis appears as blood islands in the extra embryonic yolk sac at E7.5. The extra embryonic pro-definitive hematopoiesis launches in late E8 and the embryonic definitive one turns on at E10.5 indicated by the emergence of hemogenic endothelial cells on the inner wall of the extra embryonic arteries and the embryonic aorta. To study the roles of SCL protein isoforms in murine hematopoiesis, the SCL-large (SCL-L) isoform was selectively destroyed with the remaining SCL-small (SCL-S) isoform intact. It was demonstrated that SCL-S was specifically expressed in the hemogenic endothelial cells (HECs) and SCL-L was only detected in the dispersed cells after budding from HECs. The SCLΔ/Δ homozygous mutant embryos only survived to E10.5 with normal extra embryonic vessels and red blood cells. In wild-type mouse embryos, a layer of neatly aligned CD34+ and CD43+ cells appeared on the endothelial wall of the aorta of the E10.5 fetus. However, the cells at the same site expressed CD31 rather than CD34 and/or CD43 in the E10.5 SCLΔ/Δ embryo, indicating that only the endothelial lineage was developed. These results reveal that the SCL-S is sufficient to sustain the primitive hematopoiesis and SCL-L is necessary to launch the definitive hematopoiesis.
Assuntos
Células Endoteliais , Hematopoese , Camundongos , Animais , Hematopoese/genética , Desenvolvimento Embrionário/genética , Embrião de Mamíferos/metabolismo , EndotélioRESUMO
In this study, Aurantiochytrium sp. CJ6 was cultivated heterotrophically on a waste resource, sorghum distillery residue (SDR) hydrolysate without adding any nitrogen sources. Mild sulfuric acid treatment released sugars that supported the growth of CJ6. Optimal operating parameters (salinity, 2.5%; pH, 7.5; with light exposure) determined using batch cultivation attained biomass concentration and astaxanthin content of 3.72 g/L and 69.32 µg/g dry cell weight (DCW), respectively. Using continuous-feeding fed-batch (CF-FB) fermentation, the biomass concentration of CJ6 increased to 6.3 g/L with biomass productivity and sugar utilization rate of 0.286 mg/L/d and 1.26 g/L/d, respectively. Meanwhile, CJ6 obtained maximum astaxanthin content (93.9 µg/g DCW) and astaxanthin concentration (0.565 mg/L) after 20-day cultivation. Thus, the CF-FB fermentation strategy seems to have a high potential for the cultivation of thraustochytrids to produce the high-value product (astaxanthin) using SDR as the feedstock to achieve circular economy.
Assuntos
Sorghum , Estramenópilas , Fermentação , Xantofilas , BiomassaRESUMO
Microalgae have great potential in producing energy-dense and valuable products via thermochemical processes. Therefore, producing alternative bio-oil to fossil fuel from microalgae has rapidly gained popularity due to its environmentally friendly process and elevated productivity. This current work aims to review comprehensively the microalgae bio-oil production using pyrolysis and hydrothermal liquefaction. In addition, core mechanisms of pyrolysis and hydrothermal liquefaction process for microalgae were scrutinized, showing that the presence of lipids and proteins could contribute to forming a large amount of compounds containing O and N elements in bio-oil. However, applying proper catalysts and advanced technologies for the two aforementioned approaches could improve the quality, heating value, and yield of microalgae bio-oil. In general, microalgae bio-oil produced under optimal conditions could have 46 MJ/kg heating value and 60% yield, indicating that microalgae bio-oil could become a promising alternative fuel for transportation and power generation.
Assuntos
Microalgas , Microalgas/metabolismo , Temperatura , Biocombustíveis , Pirólise , Biomassa , Água/químicaRESUMO
PURPOSE: This study investigated the oncological and functional outcomes of robot-assisted radical prostatectomy (RaRP) in high-risk and very high-risk prostate cancer patients. MATERIALS AND METHODS: One hundred localized prostate cancer patients receiving RaRP from August 2015 to December 2020 were retrospectively enrolled. According to NCCN risk classification, patients were classified into two groups, below high-risk group, and high-risk/very high-risk group, to analyze continence outcome within postoperative year one and biochemical recurrence-free survival. RESULTS: The mean age of the cohort was 69.7 ± 7.4 years with a median follow-up of 26.4 (range 3.3-71.3) months. Among them, 53%, and 47% patients were below high-risk group, and high-risk/very high-risk group, respectively. The median biochemical recurrence-free survival of the entire cohort was 53.1 months. The high-risk/very high-risk group without adjuvant treatment had significantly worse biochemical recurrence-free survival than the high-risk/very high-risk group with adjuvant treatment (19.6 vs. 60.5 months, p = 0.029). Rates of postoperative stress urinary incontinence at 1 week, 1 month, and 12 months were 50.7%, 43.7%, and 8.5%, respectively. High-risk/very high-risk patients had significantly higher rates of stress urinary incontinence at postoperative week 1 (75.8% vs. 28.9%) and month 1 (63.6% vs. 26.3%) than the below high-risk group (both p < 0.01). Rates of stress urinary incontinence after RaRP did not differ between two groups from postoperative 3 months to 12 months. The factor of high-risk / very high-risk group was a predictor of immediate but not for long-term postoperative stress urinary incontinence. CONCLUSIONS: High-risk and very high-risk prostate cancer patients receiving a combination of RaRP and adjuvant treatment had comparable biochemical recurrence-free survival to below high-risk prostate cancer patients. The high-risk/very high-risk factor impeded early but not long-term postoperative recovery of continence. RaRP can be considered a safe and feasible option for high-risk and very high-risk prostate cancer patients.
Assuntos
Neoplasias da Próstata , Robótica , Incontinência Urinária por Estresse , Masculino , Humanos , Lactente , Pré-Escolar , Estudos Retrospectivos , Prostatectomia , Adjuvantes Imunológicos , Adjuvantes FarmacêuticosRESUMO
Biowaste remediation and valorization for environmental sustainability focuses on prevention rather than cleanup of waste generation by applying the fundamental recovery concept through biowaste-to-bioenergy conversion systems - an appropriate approach in a circular bioeconomy. Biomass waste (biowaste) is discarded organic materials made of biomass (e.g., agriculture waste and algal residue). Biowaste is widely studied as one of the potential feedstocks in the biowaste valorization process due to its being abundantly available. In terms of practical implementations, feedstock variability from biowaste, conversion costs and supply chain stability prevent the widespread usage of bioenergy products. Biowaste remediation and valorization have used artificial intelligence (AI), a newly developed idea, to overcome these difficulties. This report analyzed 118 works that applied various AI algorithms to biowaste remediation and valorization-related research published between 2007 and 2022. Four common AI types are utilized in biowaste remediation and valorization: neural networks, Bayesian networks, decision tree, and multivariate regression. The neural network is the most frequent AI for prediction models, the Bayesian network is utilized for probabilistic graphical models, and the decision tree is trusted for providing tools to assist decision-making. Meanwhile, multivariate regression is employed to identify the relationship between experimental variables. AI is a remarkably effective tool in predicting data, which is reportedly better than the conventional approach owing to its characteristics of time-saving and high accuracy. The challenge and future work in biowaste remediation and valorization are briefly discussed to maximize the model's performance.
Assuntos
Inteligência Artificial , Redes Neurais de Computação , Teorema de Bayes , Biomassa , AgriculturaRESUMO
Spent coffee grounds (SCGs) are a noticeable waste that may cause environmental pollution problems if not treated appropriately. Torrefaction is a promising low-temperature carbonization technique to achieve waste remediation, recovery, and circular bioeconomy efficiently. This study aims to maximize lipids retained in thermally degraded SCGs, thereby upgrading their fuel quality to implement resource sustainability and availability. This work also analyzes the lipid contribution to biochar's calorific value under various carbonization temperatures and times. Torrefaction can retain 11-15 wt% lipids from SCG, but the lipid content decreases when the pyrolysis temperature is higher than 300 °C. Extracted lipid content consisting of fatty acids echoed the results of diesel adsorption capacity. The lipid content in the biochar from SCG torrefied at 300 °C for 30 min is 11.00 wt%, and its HHV is 28.16 MJ kg-1. In this biochar, lipids contribute about 14.84% of the calorific value, and the other carbonized solid contributes 85.16%. On account of the higher lipid content in the biochar, it has the highest diesel adsorption amount per unit mass, with a value of 1.66 g g-1. This value accounts for a 22.1% improvement compared to its untorrefied SCG. Accordingly, torrefaction can sufficiently remediate SCG-derived environmental pollution. The produced biochar can become a spilled oil adsorbent. Furthermore, oil-adsorbed biochar (oilchar) is a potential solid fuel. In summary, SCG torrefaction can simultaneously achieve pollution remediation, waste valorization, resource sustainability, and circular bioeconomy.
Assuntos
Carvão Vegetal , Café , Temperatura , Ácidos GraxosRESUMO
Water contamination due to soluble synthetic dyes has serious concerns. Membrane-based wastewater treatments are emerging as a preferred choice for removing dyes from water. Poly(vinylidene fluoride) (PVDF)-based nanomembranes have gained much popularity due to their favorable features. This review explores the application of PVDF-based nanomembranes in synthetic dye removal through various treatments. Different fabrication methods to obtain high performance PVDF-based nanomembranes were discussed under surface coating and blending methods. Studies related to use of PVDF-based nanomembranes in adsorption, filtration, catalysis (oxidant activation, ozonation, Fenton process and photocatalysis) and membrane distillation have been elaborately discussed. Nanomaterials including metal compounds, metals, (synthetic/bio)polymers, metal organic frameworks, carbon materials and their composites were incorporated in PVDF membrane to enhance its performance. The advantages and limitations of incorporating nanomaterials in PVDF-based membranes have been highlighted. The influence of nanomaterials on the surface features, mechanical strength, hydrophilicity, crystallinity and catalytic ability of PVDF membrane was discussed. The conclusion of this literature review was given along with future research.
Assuntos
Polivinil , Água , Polímeros , FiltraçãoRESUMO
Air gasification of the Wood-Plastic Composite (WPC) was performed over Ni-loaded HZSM-5 catalysts to generate H2-rich gas. Increasing SiO2/Al2O3 ratio (SAR) of HZSM-5 adversely affected catalytic activity, where the highest gas yield (51.38 wt%) and H2 selectivity (27.01 vol%) were acquired using 20 %Ni/HZSM-5(30) than those produced over 20 %Ni/HZSM-5(80) and 20 %Ni/HZSM-5(280). Reducing SAR was also favorably conducive to increasing the acyclic at the expense of cyclic compounds in oil products. These phenomena are attributed to enhanced acid strength and Ni dispersion of 20 %Ni/HZSM-5(30) catalyst. Moreover, catalytic activity in the terms of gas yield and H2 selectivity enhanced with growing Ni loading to 20 %. Also, the addition of promoters (Cu and Ca) to 20 %Ni/HZSM-5(30) boosted the catalytic efficiency for H2-rich gas generation. Raising temperature indicated a positive relevance with the gas yield and H2 selectivity. WPC valorization via gasification technology would be an outstanding outlook in the terms of a waste-to-energy platform.
Assuntos
Plásticos , Dióxido de Silício , Madeira , Temperatura , CatáliseRESUMO
In this study, sunflower seed husk biochar prepared by ZnCl2-activated and hydrothermal carbonization (HZSF) was studied for its effectiveness in removing tetracycline (TC) from an aqueous solution. The physical and chemical properties of materials were characterized by different methods of surface analysis. The specific surface area of HZSF is significantly enhanced over 1200 times compared with non-modified biochar (HZSF: 1578.3 m2·g-1, SF-700: 1.3 m2·g-1), which has an enhancement effect on the TC adsorption capacity. The HZSF showed that the Langmuir isotherm and pseudo-second-order kinetic models could properly characterize the adsorption processes. In the Langmuir isotherm model, HZSF exhibited effective adsorption performance with qmax of 673.0 mg·g-1 at 298 K for 24 h. The possible mechanisms for the adsorption process were the monolayer, chemical adsorption, and the participation of strong intermolecular forces. In general, HZSF has the potential to be a useful adsorbent for the elimination of antibiotics from water-based solutions.
Assuntos
Helianthus , Poluentes Químicos da Água , Adsorção , Porosidade , Poluentes Químicos da Água/análise , Tetraciclina , Antibacterianos , Carvão Vegetal/química , Cinética , Sementes/químicaRESUMO
Ninety-three women with urodynamic stress incontinence (USI) and a mean age of 60.8 ± 10.7 (36-83) years were retrospectively enrolled. According to their VUDS, 31 (33%) were grouped into USI and detrusor overactivity (DO), 28 (30.1%) were grouped into USI and hypersensitive bladder (HSB), and 34 (36.6%) were controls (USI and stable bladder). The USI and DO group had significantly increased 8-isoprostane (mean, 33.3 vs. 10.8 pg/mL) and 8-hydroxy-2-deoxyguanosine (8-OHdG; mean, 28.9 vs. 17.4 ng/mL) and decreased interleukin (IL)-2 (mean, 0.433 vs. 0.638 pg/mL), vascular endothelial growth factor (mean, 5.51 vs. 8.99 pg/mL), and nerve growth factor (mean, 0.175 vs. 0.235 pg/mL) levels compared to controls. Oxidative stress biomarkers were moderately diagnostic of DO from controls, especially 8-isoprostane (area under the curve (AUC) > 0.7). Voided volume was highly diagnostic of DO from either controls or non-DO patients (AUC 0.750 and 0.915, respectively). The proposed prediction model with voided volume, 8-OHdG, and 8-isoprostane (cutoff values 384 mL, 35 ng/mL, and 37 pg/mL, respectively) had an accuracy of 81.7% (sensitivity, 67.7%; specificity, 88.7%; positive predictive value, 75.0%; negative predictive value, 84.6%). Combined with voided volume, urinary oxidative stress biomarkers have the potential to be used to identify urodynamic DO in patients with USI.
RESUMO
Many energy-intensive processes are employed to enhance biomass fuel properties to overcome the difficulties in utilizing biomass as fuel. Therefore, energy conservation during these processes is crucial for realizing a circular bioeconomy. This study develops a newly devised method to evaluate SCG biochars' higher heating value (HHV) and predict moisture content from power consumption. It is found that the increasing rates of HHV immediately follow decreases in power consumption, which could be used to determine the pretreatment time for energy conservation. The non-dominated sorting genetic algorithm II (NSGA-II) maximizes SCG biochar's HHV while minimizing energy consumption. The results show that producing SCG biochar with 23.98 MJâkg-1 HHV requires 20.042 MJâkg-1, using a torrefaction temperature of 244 °C and torrefaction time of 27 min and 43 sec. Every kilogram of biochar with an energy yield of 85.93 % is estimated to cost NT$ 12.21.
Assuntos
Carbono , Café , Carvão Vegetal , Temperatura , BiomassaRESUMO
In recent years, the unnecessary overuse of antibiotics has increased globally, resulting in antibiotic contamination of water, which has become a significant environmental concern. This study aims to examine the adsorption behavior of antibiotics (Tetracycline TC, Ciprofloxacin CIP, Ibuprofen IBP, and Sulfamethoxazole SMX) onto H3PO4-activated sunflower seed husk biochar (PSF). The results demonstrated that H3PO4 could enhance the specific surface area (378.8 m2/g) and create a mesoporous structure of biochar. The adsorption mechanism was investigated using kinetic models, isotherms, and thermodynamics. The maximum adsorption capacities (qmax) of TC, CIP, SMX, and IBP are 429.3, 361.6, 251.3, and 251.1 mg g-1, respectively. The adsorption mechanism of antibiotics on PSF was governed by complex mechanisms, including chemisorption, external diffusion, and intraparticle diffusion. This research provides an environmentally friendly method for utilizing one of the agricultural wastes for the removal of a variety of antibiotics from the aquatic environment.
Assuntos
Helianthus , Poluentes Químicos da Água , Antibacterianos , Adsorção , Carvão Vegetal/química , Sulfametoxazol , Poluentes Químicos da Água/análise , CinéticaRESUMO
Large-size woody biomass is a valuable renewable resource to replace fossil fuels in biorefinery processes. The preprocessing of wood chips and briquettes is challenging to manage, especially in an industrial setting, as it generates a significant amount of dust and noise and occasionally causes unexpected accidents. As a result, a substantial amount of resources, energy, labor, and space are needed. The thermochemical conversion behavior of large-size woody biomass was studied to reduce energy consumption for chipping. Large-size wood was 1.5 m in length, 0.1 m in breadth, and stacked 90 cm in height. This strategy has many benefits, including increased effectiveness and reduced CO2 emissions. The target of this paper presents the thermochemical process, and large-size wood was chosen because it provides high-quality product gas while reducing the preprocessing fuel cost. This review examines the benefits of thermochemical conversion technologies for assessing the likelihood of carbon neutrality.
Assuntos
Carbono , Madeira , Biomassa , Combustíveis Fósseis , TecnologiaRESUMO
As the global consumption of cigarettes has increased, the massive generation of cigarette butts (CBs) has led to critical environmental and health problems. Landfilling or incineration of CBs has been conventionally carried out, but such disposal protocols have suffered from the potential risks of the unwanted/uncontrolled release of leachates, carcinogens, and toxic chemicals into all environmental media. Thus, this study focuses on developing an environmentally dependable method for CB disposal. Littered CBs from filtered/electronic cigarettes were valorized into syngas (H2/CO). To seek a greener approach for the valorization of CBs, CO2 was intentionally considered as a reaction intermediate. Prior to multiple pyrolysis studies, the toxic chemicals in the CBs were qualitatively determined. This study experimentally proved that the toxic chemicals in CBs were detoxified/valorized into syngas. Furthermore, this work demonstrated that CO2 was effective in thermally destroying toxic chemicals in CBs via a gas-phase reaction. The reaction features and CO2 synergistically enhance syngas production. With the use of a supported Ni catalyst and CO2, syngas production from the catalytic pyrolysis of CBs was greatly enhanced (approximately 4 times). Finally, the gas-phase reaction by CO2 was reliably maintained owing to the synergistic mechanistic/reaction feature of CO2 for coke formation prevention on the catalyst surface.
Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Dióxido de Carbono , Incineração , PiróliseRESUMO
Crop residues are representative agricultural waste materials, massively generated in the world. However, a large fraction of them is currently being wasted, though they have a high potential to be used as a value-added carbon-rich material. Also, the applications of carbon-rich materials from agricultural waste to industries can have economic benefit because waste-derived carbon materials are considered inexpensive waste materials. In this review, valorization methods for crop residues as carbon-rich materials (i.e., biochars) and their applications to industrial toxic gas removals are discussed. Applications of crop residue biochars to toxic gas removal can have significant environmental benefits and economic feasibility. As such, this review discussed the technical advantages of the use of crop residue biochars as adsorbents for hazardous gaseous pollutants and greenhouse gases (GHGs) stemmed from combustion of fossil fuels and the different refinery processes. Also, the practical benefits from the activation methods in line with the biochar properties were comprehensively discussed. The relationships between the physico-chemical properties of biochars and the removal mechanisms of gaseous pollutants (H2S, SO2, Hg0, and CO2) on biochars were also highlighted in this review study. Porosity controls using physical and chemical activations along with the addition of specific functional groups and metals on biochars have significantly contributed to the enhancement of flue gas adsorption. The adsorption capacity of biochar for each toxic chemical was in the range of 46-76 mg g-1 for H2S, 40-182 mg g-1 for SO2, 80-952 µg g-1 for Hg0, and 82-308 mg g-1 CO2, respectively. This helps to find suitable activation methods for adsorption of the target pollutants. In the last part, the benefits from the use of biochars and the research directions were prospectively provided to make crop residue biochars more practical materials in adsorption of pollutant gases.
Assuntos
Poluentes Ambientais , Mercúrio , Gases , Dióxido de Carbono , Carvão Vegetal/química , Carbono , AdsorçãoRESUMO
Steam gasification of microalgae upon perovskite oxide-supported nickel (Ni) catalysts was carried out for H2-rich gas production. Ni-perovskite oxide catalysts with partial substitution of B in perovskite structures (Ni/CaZrO3, Ni/Ca(Zr0.8Ti0.2)O3, and Ni/Ca(Zr0.6Ti0.4)O3) were synthesized and compared with those of the Ni/Al2O3 catalyst. The perovskite oxide supports improved Ni dispersion by reducing the particle size and strengthening the Ni-support interaction. Higher gas yields and H2 selectivity were obtained using Ni-perovskite oxide catalysts rather than Ni/Al2O3. In particular, Ni/Ca(Zr0.8Ti0.2)O3 showed the highest activity and selectivity for H2 production because of the synergetic effect of metallic Ni and elements present in the perovskite structures caused by high catalytic activity coupled with enhanced oxygen mobility. Moreover, increasing the temperature promoted the yield of gas and H2 content. Overall, considering the outstanding advantages of perovskite oxides as supports for Ni catalysts is a promising prospect for H2 production via gasification technology.