Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
J Am Chem Soc ; 141(34): 13654-13663, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31398288


Postsynthetic metalation (PSM) has been employed as a robust method for the postsynthetic modification of metal-organic frameworks (MOFs). However, the lack of relevant information that can be obtained for the postsynthetically introduced metallic ions has hindered the development of PSM applications. Thanks to the advancement in single-crystal X-ray diffraction (SCXRD) technology, there have been a few recent examples in which successful postsynthetic introduction of single metal ions into MOFs occurred at the defined chelating sites. These works have provided useful explanations about the complicated host-guest chemistry involved in PSMs. On the other hand, there are only limited examples with crystallographic snapshots of the postsynthetic installation of metal clusters into the pores of MOFs using an ordinary SCXRD due to the loss of crystallinity of parent matrix during the PSM process. Herein, by the careful selection of starting materials and controlling the reaction conditions, we report the first crystallographic visualization of metal clusters inserted into Zr-based MOFs via PSM. The structural advantages of the parent Zr-MOF, which are inherited from the stable Zr6 cluster and triazole-containing dicarboxylate ligand, ensure both the preservation of high crystallinity and the presence of flexible coordination sites for PSM. Furthermore, PSM of metal clusters in a MOF pore space enhances stability of the final samples while also imparting the functionality of a successful catalyst toward ethylene dimerization reaction. The related construction ideas and structural information detailed in this work can help lay the foundation for further advancements using the postmodification of MOFs as well as open new doors for the utilization of SCXRD technology in the field of MOFs.

ACS Appl Mater Interfaces ; 11(15): 14383-14390, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30925036


Water contamination by toxic heavy elements is becoming an urgent problem in environmental science and separation technologies. However, the design of sophisticated absorbents with high stability and outstanding removal efficacy for ion coadsorption is still a technical challenge. Herein, inspired by biological Hg/Se antagonism detoxification, we have designed the first porous polymer network (PPN) for the concurrent removal of Hg/Se species in aqueous solutions. Remarkably, the MoS42- functionalized PPN-150-MoS4 exhibits a rapid and highly efficient simultaneous removal of toxic anions (SeO42- and SeO32-) and metals (Hg2+). The high thiophilicity of Hg2+ leads to 99.9% removal within minutes. More importantly, selenite and selenate, typically known for being difficult to remove from aqueous environments, can be removed by PPN-150-MoS4, exhibiting >99% removal within minutes when in the presence of Hg2+. At the same time, the removal efficiency for Se(IV) and Se(VI) oxoanions in the absence of Hg2+ is very low, reaching only 14% removal. Overall, PPN-150-MoS4 exhibits one of the highest adsorption capacities toward SeO32- (124 mg/g), making it a promising and cheap sorbent material for water remediation applications. This work provides a fresh route for detoxification and remediation strategies that aim to regulate the presence of toxic ions in nature. The material herein shall guide the state-of-the-art design of efficient water treatment techniques through a combination of biological antagonism and materials chemistry.

Polímeros/química , Poluentes Químicos da Água/química , Adsorção , Mercúrio/química , Porosidade , Óxidos de Selênio/química , Termogravimetria , Purificação da Água/métodos
Chemistry ; 23(33): 7990-7996, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28326629


An unprecedented reversible dynamic transformation is reported in a metal-organic framework involving bond formation, which is accompanied by two important structural changes; achiral to chiral and two- to three-dimensions. Using two bent organic ligands (diimpym=4,6-di(1H-imidazol-1-yl)pyrimidine; H2 npta=5-nitroisophthalic acid) and CoII (NO3 )2 ⋅6 H2 O the coordination polymer Co(diimpym)(npta)⋅CH3 OH, (1⋅CH3 OH), was obtained solvothermally. Its structure consists of knitted pairs of square layers (44 -sql net) of five-coordinated Co and disordered methanol, and it crystallized in the achiral Pbca space group at room temperature. It undergoes a single crystal to single crystal (SC-SC) transformation to a 3D interpenetrated framework (α-polonium-type net, pcu) of six-coordinated Co and ordered methanol in the chiral P21 21 21 space group below 220 K. Most unusual is the dynamic temperature-dependent shortening of a Co⋅⋅⋅O connection from a non-bonded 2.640 Š(298 K) to a bonded 2.347 Šdistance (100 K) transforming the square pyramidal cobalt polyhedron to a distorted octahedron. The desolvated crystals (1) obtained at 480 K retain the full crystallinity and crystallize in the achiral Pbca space group between 100 and 298 K but the dynamic shortening of the Co⋅⋅⋅O distance connecting the layers into the 3D pcu framework structure is observed. Following post-synthetic insertion of ethanol (1⋅CH3 CH2 OH) it does not exhibit the transformation and retains the knitted 2D achiral Pbca structure for all temperatures (100-298 K) and the ethanol is always disordered. The structural analyses thus conclude that the ordering of the methanol induces the chirality while the available space controls the dynamic motion of the knitted 2D networks into the 3D interpenetrated framework. Consequently, 1 selectively adsorbs CO2 to N2 and exhibits Type-III isotherms indicating dynamic motion of the 2D networks to accommodate the CO2 at 273 and 298 K in contrast to the rigidity of the 3D framework at 77 K preventing N2 from penetrating the solid. The magnetic properties are also reported.

Nanoscale ; 8(45): 18905-18911, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27747330


Here we report the single-crystal structure, experimental and theoretical characterization of a 41-metal atom Au-Ag alloy nanocluster [Au3Ag38(SCH2Ph)24X5]2- (1, X = Cl or Br). The nanocluster 1 is co-protected by thiolate and halogen atoms and features an all-metallic face-fused biicosahedral Au2@AuAg20 rod-like kernel enwrapped by the outermost Ag18(SCH2Ph)24X3 shell. Two sites on the surface of the biicosahedral kernel are partially occupied by Au and Ag atoms. The outer Ag18(SCH2Ph)24X3 shell is composed of two Ag6S6 cycles at the two poles and one Ag6S2X3 arc at the equator with both 2- and 3-coordinated Ag atoms, which has not been observed in gold or silver nanoclusters ever before. Theoretical calculations elucidate its electronic structure as well as optical properties, thus producing informative correlations between its structure and properties. This nanocluster exhibits near-infrared (NIR) emission around 825 nm. This work (i) snapshots a rare crystal structure of an Au-doped silver alloyed nanocluster; (ii) gives a deep insight to understand how the capping ligand or anions affect the structure of the alloy nanocluster; and (iii) provides precise information about gold atom doping site that is very significant in the recognition of potential active catalytic sites of the alloy nanoparticles.

Huan Jing Ke Xue ; 29(9): 2665-71, 2008 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-19068662


With the purpose of establishing diesel fuel standard for China National 4th Emission Standard, as one part of Beijing "Auto-Oil" programme, engine performance test has been done on a typical Euro IV diesel engine using eight diesel fuels with different fuel properties. Test results show that, fuel properties has little effect on power, fuel consumption, and in-cylinder combustion process of tested Euro IV diesel engine; sulfate in PM and gaseous SO2 emissions increase linearly with diesel sulfur content increase; cetane number increase cause BSFC and PM reduce and NOx increase; T90 decrease cause NOx reduce while PM shows trend of reduce. Prediction equations of tested Euro IV diesel engine's ESC cycle NOx and PM emissions before SCR response to diesel fuel sulfur content, cetane number, T90 and aromatics have been obtained using linear regression method on the base of test results.

Poluentes Atmosféricos/análise , Poluição do Ar/análise , Gasolina/análise , Emissões de Veículos/análise , Poluição do Ar/prevenção & controle , China , Monitoramento Ambiental , Gasolina/normas , Material Particulado/análise , Emissões de Veículos/prevenção & controle