Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
J Environ Manage ; 288: 112476, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827020

RESUMO

This study established a Fe2+/persulfate oxidation system to dewater sludge in WWTPs. Dewatering performance, persulfate consumption and the variations of sludge pH, TN and TP during dewatering process were monitored. EPS and ζ-potential behaviors for ameliorating sludge dewatering was investigated. Transformation, leaching toxicity and environmental risk of heavy metals in sludge during dewatering were determined. Results demonstrated that after treated by Fe2+/persulfate oxidation system with 0.6 mmol/g-VS of persulfate at Fe2+/persulfate molar ratio 0.6, WC decreased to 53.5% and SCST increased to 4.15, which implied an excellent improvement of sludge dewatering. The fast persulfate consumption, the decrease of sludge pH and the increase of TN illustrated the positive effects of Fe2+ in activating persulfate and the decomposition of EPS by the activation products, SO4•- and •OH. Another product (Fe3+) generated during persulfate activation could decrease the content of phosphorus-containing matter (released from EPS decomposition) through the precipitation reaction with PO43-. The decrease of TOC and UV-254 happened in HPO-A, HPO-N and TPI-A organic substance of EPS (mainly contained in TB-EPS fraction) indicated that the destruction of hydrophobic organic matter of EPS would stimulate the release of bound water, which was beneficial to dewater sludge. The largest protein loss in TB-EPS (from 24.5 to 10.7 mg/L) indicated that the effective decomposition of TB-EPS could significantly ameliorate sludge dewatering. The increase of ζ-potential indicated the degradation of organic matter in EPS with negative charge. To sum up, the destruction of protein-like substances in hydrophobic organic matter of TB-EPS was the main mechanism for improving sludge dewatering by Fe2+/persulfate oxidation system. 3D-EEM fluorescence spectroscopy analysis proved that these protein-like substances were mainly tryptophan protein and humic acid. Moreover, due to the disruption of EPS, the contents of heavy metals in sludge, and their leaching toxicity and environmental risk were reduced. Therefore, Fe2+/persulfate oxidation system has potential and application prospects to improve sludge dewatering and optimize sludge management in WWTPs.

2.
Cytokine ; : 155512, 2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33824083

RESUMO

The present study investigated the effect of puerarin on promoting the osteogenesis in steroid-induced necrosis of the femoral head (SONFH). New Zealand rabbits were administrated with horse serum and methylprednisolone (MPS) for establishing SONFH in vivo model, which was then treated with puerarin treatment. Histo-morphological changes in the femoral head were examined by hematoxylin-eosin staining. Osteoblasts were isolated from healthy rabbits and treated by individual or combined administration of dexamethasone and puerarin. Osteoblast viability was measured by CCK-8 assay. Mineralized nodule formation was evaluated by alizarin red assay. Expressions of RUNX family transcription factor 2 (RUNX2), Type-I collagen α 1 (COL1A1), ALP and miR-34a in the femoral head were determined by qRT-PCR and Western blot. Puerarin attenuated the effect of SONFH on promoting histopathological abnormalities and counteracted SONFH inhibition on the expressions of ALP, RUNX2, COL1A1 and miR-34a in the rabbits. Rabbit osteoblasts were successfully isolated, as they showed red mineralized nodules. Dexamethasone exposure decreased osteoblast viability, which was increased by puerarin treatment. Furthermore, puerarin treatment attenuated dexamethasone-induced inhibition on the viability, osteoblastic differentiation, and the expressions of ALP, RUNX2, COL1A1 and miR-34a in the osteoblasts. Puerarin facilitated osteogenesis of steroid-induced necrosis of rabbit femoral head and osteogenesis of steroid-induced osteocytes via miR-34a upregulation.

3.
BMC Pediatr ; 21(1): 118, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750330

RESUMO

BACKGROUND: Aspergillus infection is more common among premature infants in neonatal intensive care units, who have decreased qualitative immune defenses and need various invasive treatment procedures. It is rare in normal full-term neonates, especially in newborn babies from the community. Moreover, the white blood cell (WBC) count and C-reactive protein (CRP) level may be normal or slightly changed in fungal infections, but the neonate reported in this study had significant increases in WBC and CRP. To the best of our knowledge, this is the first report on a full-term neonate from the community with aspergillus infection accompanied by significant increases in WBC and CRP levels. CASE PRESENTATION: A 28-day-old infant, who received empirical antibiotic treatment for 10 days because of neonatal pneumonia, was referred to our neonatal department from the local hospital. The infant had persistent infection and multiple organ failure syndromes. Bronchoscopy and deep sputum smear were performed to identify the pathogen, which confirmed aspergillus infection in the sputum. Fluconazole was immediately administered, but the baby died after three days. Thereafter, an autopsy was performed with parental consent. There were multiple necrotic areas in the lungs and liver, and pathological examination revealed aspergillus. CONCLUSIONS: The present case emphasized that community-sourced aspergillus infection can exist in full-term neonates, with significantly increased WBC count and CRP level. Advanced antibiotics were not effective in this case, and fungal infections should have been considered earlier.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33687844

RESUMO

The electroencephalograph (EEG) source imaging (ESI) method is a non-invasive method that provides high temporal resolution imaging of brain electrical activity on the cortex. However, because the accuracy of EEG source imaging is often affected by unwanted signals such as noise or other source-irrelevant signals, the results of ESI are often incongruous with the real sources of brain activities. This study presents a novel ESI method (WPESI) that is based on wavelet packet transform (WPT) and subspace component selection to image the cerebral activities of EEG signals on the cortex. First, the original EEG signals are decomposed into several subspace components by WPT. Second, the subspaces associated with brain sources are selected and the relevant signals are reconstructed by WPT. Finally, the current density distribution in the cerebral cortex is obtained by establishing a boundary element model (BEM) from head MRI and applying the appropriate inverse calculation. In this study, the localization results obtained by this proposed approach were better than those of the original sLORETA approach (OESI) in the computer simulations and visual evoked potential (VEP) experiments. For epilepsy patients, the activity sources estimated by this proposed algorithm conformed to the seizure onset zones. The WPESI approach is easy to implement achieved favorable accuracy in terms of EEG source imaging. This demonstrates the potential for use of the WPESI algorithm to localize epileptogenic foci from scalp EEG signals.

6.
Vet Res ; 52(1): 24, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596990

RESUMO

Avian coccidiosis caused by Eimeria leads to huge economic losses on the global poultry industry. In this study, microneme adhesive repeat regions (MARR) bc1 of E. tenella microneme protein 3 (EtMIC3-bc1) was used as ligand, and peptides binding to EtMIC3 were screened from a phage display peptide library. The positive phage clones were checked by enzyme-linked immunosorbent assay (ELISA). Competitive ELISA was applied to further verify the binding capability between the positive phages and recombinant EtMIC3-bc1 protein or sporozoites protein. The inhibitory effects of target peptides on sporozoites invasion of MDBK cells were measured in vitro. Chickens were orally administrated with target positive phages and the protective effects against homologous challenge were evaluated. The model of three-dimensional (3D) structure for EtMIC3-bc1 was conducted, and molecular docking between target peptides and EtMIC3-bc1 model was analyzed. The results demonstrated that three selected positive phages specifically bind to EtMIC3-bc1 protein. The three peptides A, D and W effectively inhibited invasion of MDBK cells by sporozoites, showing inhibited ratio of 71.8%, 54.6% and 20.8%, respectively. Chickens in the group orally inoculated with phages A displayed more protective efficacies against homologous challenge than other groups. Molecular docking showed that amino acids in three peptides, especially in peptide A, insert into the hydrophobic groove of EtMIC3-bc1 protein, and bind to EtMIC3-bc1 through intermolecular hydrogen bonds. Taken together, the results suggest EtMIC3-binding peptides inhibit sporozoites entry into host cells. This study provides new idea for exploring novel strategies against coccidiosis.


Assuntos
Galinhas , Coccidiose/veterinária , Eimeria tenella/imunologia , Doenças das Aves Domésticas/prevenção & controle , Proteínas de Protozoários/imunologia , Esporozoítos/imunologia , Animais , Bacteriófagos , Ceco/patologia , Coccidiose/prevenção & controle , Simulação de Acoplamento Molecular , Doenças das Aves Domésticas/parasitologia , Ligação Proteica , Conformação Proteica
7.
Food Funct ; 12(5): 2257-2269, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33596303

RESUMO

Due to the scarcity of the data on digestion and metabolism of wheat embryo proteins WEP, a simulated gastrointestinal digestion (SGID) scheme in vitro was utilized to explain the protein hydrolysis and biological activity of WEP during the digestion process. WEP had a certain degree of resistance to gastric digestion, especially the protein with a molecular weight of 50 kDa. In all the samples, no visually intact protein band emerged in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) during the intestinal phase, which was consistent with a gradually increasing content of released free amino acids. Moreover, the resistant digestion peptides (the amino acid sequences were ISQFXX and GTVX) were identified at the end of the gastrointestinal digestion (GID) product by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Although the complete protein in the sample was degraded, the antioxidant activity was not negatively affected, rather it showed an increasing trend and maintained a higher level of activity. The amount of the ß-sheet gradually increased as that of the α-helix declined, the random coil decreased, whereas no obvious change was noticed in ß-turn content. The results provide a better understanding for optimal selection of peptide candidates for designing protein products in the food processing industry as well as for WEP digestion and metabolism in the human body.

8.
Nat Commun ; 12(1): 147, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420040

RESUMO

Large-area light-emitting diodes (LEDs) fabricated by mass-production techniques are needed for low-cost flat-panel lighting. Nevertheless, it is still challenging to fabricate efficient large-area LEDs using organic small molecules (OLEDs), quantum dots (QLEDs), polymers (PLEDs), and recently-developed hybrid perovskites (PeLEDs) due to difficulties controlling film uniformity. To that end, we report sol-gel engineering of low-temperature blade-coated methylammonium lead iodide (MAPbI3) perovskite films. The precipitation, gelation, aging, and phase transformation stages are dramatically shortened by using a diluted, organoammonium-excessed precursor, resulting in ultra-flat large-area films (54 cm2) with roughness reaching 1 nm. The external quantum efficiency of doctor-bladed PeLEDs reaches 16.1%, higher than that of best-performing blade-coated OLEDs, QLEDs, and PLEDs. Furthermore, benefitting from the throughput of the blade-coating process and cheap materials, the expected cost of the emissive layer is projected to be as low as 0.02 cents per cm2, emphasizing its application potential.

9.
Metab Eng ; 64: 95-110, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33493644

RESUMO

Methanol is assimilated through the serine cycle to generate acetyl-CoA without carbon loss. However, a highly active serine cycle requires high consumption of reducing equivalents and ATP, thereby leading to the impaired efficiency of methanol conversion to reduced chemicals. In the present study, a genome-scale flux balance analysis (FBA) predicted that the introduction of the heterologous ribulose monophosphate (RuMP) cycle, a more energy-efficient pathway for methanol assimilation, could theoretically increase growth rate by 31.3% for the model alphaproteobacterial methylotroph Methylorubrum extorquens AM1. Based on this analysis, we constructed a novel synergistic assimilation pathway in vivo by incorporating the RuMP cycle into M. extroquens metabolism with the intrinsic serine cycle. We demonstrated that the operation of the synergistic pathway could increase cell growth rate by 16.5% and methanol consumption rate by 13.1%. This strategy rewired the central methylotrophic metabolism through adjusting core gene transcription, leading to a pool size increase of C2 to C5 central intermediates by 1.2- to 3.6-fold and an NADPH cofactor improvement by 1.3-fold. The titer of 3-hydroxypropionic acid (3-HP), a model product in the newly engineered chassis of M. extorquens AM1, was increased to 91.2 mg/L in shake-flask culture, representing a 3.1-fold increase compared with the control strain with only the serine cycle. The final titer of 3-HP was significantly improved to 0.857 g/L in the fed-batch bioreactor, which was more competitive compared with the other 3-HP producers using methane and CO2 as C1 sources. Collectively, our current study demonstrated that engineering the synergistic methanol assimilation pathway was a promising strategy to increase the carbon assimilation and the yields of reduced chemicals in diverse host strains for C1 microbial cell factories.

11.
Mol Med Rep ; 23(1): 1, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33179076

RESUMO

At present, treatment options for thyroid carcinoma remain limited. The present study aimed to investigate the role of ZFAS1 in various major hallmarks of cancer and the underlying mechanisms in thyroid carcinoma cells. The interactions between long non­coding RNAs (lncRNAs), microRNAs (miRs) and target genes were predicted by bioinformatics and confirmed by performing dual­luciferase assays. The mRNA and protein expressions were determined by reverse transcription­quantitative PCR and western blotting. Cell invasion, migration, and viability were evaluated via Transwell, wound­healing and Cell Counting Kit­8 assays, respectively. The results demonstrated that lncRNA ZFAS1 expression was upregulated in thyroid carcinoma tissues, TT and SW579 cells, and was associated with the proliferation of these two cell lines. Notably, downregulation ZFAS1 reduced migration and invasion, and reversed the promotive effects of miR­302a­3p inhibitor on the proliferation, migration and invasion of TT and SW579 cells. Moreover, cyclin D1 (CCND1) is targeted by miR­302a­3p, and was regulated by ZFAS1. In addition, the downregulation of ZFAS1 not only reversed the promotive effects of miR­302a­3p inhibitor on CCND1 expression and the epithelial­mesenchymal transition (EMT) of TT and SW579 cells, but also targeted and increased the expression of miR­302a­3p, and further reduced the expression of CCND1, resulting in suppression of the proliferation, migration, invasion and EMT of thyroid carcinoma cells.

12.
Biol Pharm Bull ; 43(12): 1847-1858, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33268702

RESUMO

Alzheimer's disease (AD) is a chronic neurodegeneration disease that is closely related to the abnormal tight junction scaffold proteins (TJ) proteins of the blood-brain barrier (BBB). Recently, Yi-Zhi-Fang-Dai Formula (YZFDF) had exerted a neuronal protective effect against amyloid peptide (Aß) toxicity. Still, the therapeutic mechanism of YZFDF in restoring Aß-induced injury of TJ proteins (ZO-1, Occludin, and Claudin-5) remains unclear. This study aimed to explore the underlying mechanism of YZFDF in alleviating the injury of TJ proteins. We examined the impacts of YZFDF on autophagy-related proteins and the histopathology of Aß in the APP/PS1 double-transgenic male mice. We then performed the free intracellular calcium levels [Ca2+]i analysis and the cognitive behavior test of the AD model. Our results showed that YZFDF ameliorated the injury of TJ proteins by reducing the mRNA transcription and expression of the receptor for advanced glycation end-products (RAGE), the levels of [Ca2+]i, calmodulin-dependent protein kinase ß (CaMKKß), phosphorylated AMP-activated protein kinase (AMPK). Accordingly, YZFDF increased the expression of the phosphorylated mammalian targets of rapamycin (mTOR), leading to inhibition of autophagy (downregulated LC3 and upregulated P62). Moreover, the Aß1-42 oligomers-induced alterations of autophagy in murine mouse brain capillary (bEnd.3) cells were blocked by RAGE small interfering RNA (siRNA). These results suggest that YZFDF restored TJ proteins' injury by suppressing autophagy via RAGE signaling. Furthermore, YZFDF reduced the pathological precipitation of Aß in the hippocampus, and improved cognitive behavior impairment of the AD model suggested that YZFDF might be a potential therapeutic candidate for treating AD through RAGE/CaMKKß/AMPK/mTOR-regulated autophagy pathway.

13.
Clin Transl Sci ; 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33278338

RESUMO

Malnutrition in gastric cancer patients with normal body mass index (BMI) is often ignored. This study aimed to explore the role of sarcopenia in predicting postoperative complication and long-term survival in gastric cancer patients with normal BMI. We included patients with normal BMI (18.5 kg/m2 ≤ BMI < 23 kg/m2 ) who underwent radical gastrectomy between July 2014 and December 2016. Sarcopenia was assessed by muscle mass, handgrip strength, and gait speed. Kaplan-Meier survival analysis was used to analyze the association between sarcopenia and the prognosis of gastric cancer patients. Univariate and multivariate analyses were used to identify risk factors contributing to postoperative complications and long-term survival. Overall, 267 gastric cancer patients with normal BMI were included in this study; of which, 49 (18.35%) patients were diagnosed with sarcopenia. Sarcopenia patients had higher incidence of a major postoperative complication, longer postoperative hospital stays, and greater hospital costs. The Kaplan-Meier survival analysis showed that sarcopenia patients had poorer overall survival than non-sarcopenia patients. Univariate and multivariate analyses showed that sarcopenia was an independent predictor for postoperative complication and long-term survival in such patients. Sarcopenia is an independent predictor for postoperative complication and long-term survival in patients with normal BMI after radical gastrectomy for gastric cancer. We recommend that patients with normal BMI should perform nutritional risk screening by sarcopenia.

14.
Artigo em Inglês | MEDLINE | ID: mdl-33270414

RESUMO

Fluorination is one of the effective approaches to alter the organic semiconductor properties that impact the performance of the organic solar cells (OSCs). Positive effects of fluorination are also revealed in the application of fused ring electron acceptors (FREAs). However, in comparison with the efforts allocated to the material designs and power conversion efficiency enhancement, understanding on the excitons and charge carriers' behaviors in high-performing OSCs containing FREAs is limited. Herein, the impact of fluorine substituents on the active layer morphology, and therefore exciton dissociation, charge separation, and charge carriers' recombination processes are examined by fabricating OSCs with PTO2 as the donor and two FREAs, O-IDTT-IC and its fluorinated analogue O-IDTT-4FIC, as the acceptors. With the presence of O-IDTT-4FIC in the devices, it is found that the excitons dissociate more efficiently, and the activation energy required to split the excitons to free charge carriers is much lower; the charge carriers live longer and suffer less extent of trap-assisted recombination; the trap density is 1 order of magnitude lower than that of the nonfluorinated counterpart. Overall, these findings provide information about the complex impacts of FREA fluorination on efficiently performed OSCs.

15.
Vet Parasitol ; 289: 109320, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33248421

RESUMO

Avian coccidiosis leads to severe economic losses on the global poultry industry. Immune mapped protein-1 (IMP1) is a novel membrane protein, and was reported to be a candidate protective antigen. However, production and utilization modes of IMP1 using Lactococcus lactis as delivery vector were not reported untill now. In the present study, Eimeria tenella IMP1 (EtIMP1) protein was expressed in L. lactis under the nisin-inducible promoter, and EtIMP1 protein was produced in cytoplasmic, cell wall-anchored and secreted forms. Each chicken was orally immunized with one of the three live EtIMP1-expressing lactococci three times at 2 weeks intervals (immunized group), or with live bacteria harboring empty vector (immunized control group). Chickens in immunized and immunized control group were challenged with E. tenella sporulated oocysts to assess the immune responses. The results showed that proliferative responses of peripheral blood T lymphocytes, mRNA expression levels of IL-2, IL-4, IL-10 and IFN-γ in spleen tissues, levels of serum IgG and secretory IgA (sIgA) in cecal lavage fluids from chickens in immunized group were all significantly elevated compared to that in immunized control group. All three the live EtIMP1-expressing lactococci significantly decreased oocyst shedding, alleviated pathological damage in cecum and improved weight gain compared with bacteria harboring empty vector. These results suggested EtIMP1 protein delivered by L. lactis might be a promising candidate in developing novel vaccines against Eimeria infection.

16.
Anal Chim Acta ; 1139: 27-35, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33190706

RESUMO

An organic-inorganic hybrid monolith incorporated with titanium dioxide nanotubes (TNTs) and hydrophilic deep eutectic solvents (DESs) was prepared and evaluated by the isolation of proteins using solid phase microextraction. A typical polymerization system was composed of choline chloride/methacrylic acid (ChCl/MAA, DESs monomer), glycidyl methacrylate (GMA), as well as ethylene glycol dimethacrylate (EDMA) in the presence of TNTs. Then the epoxy groups on the surface of the resulting monolith were modified with amino groups. The synergistic effect of TNTs and DESs monomer to improve the enrichment performance of the sorbent significantly was demonstrated. Compared with the corresponding TNTs/DESs-free monolith, the recoveries of BSA and OVA were increased to 98.6% and 92.7% (RSDs < 2.0%), with an improvement of more than 60.0%. With a correlation coefficient of determination (R2) higher than 0.9995, the enrichment factors (EFs) were 21.9-28.3-fold. In addition, the resulting monolith was further applied to specifically capture proteins from rat liver according to their pI value, followed by HPLC-MS/MS analysis. The results indicated that the developed monolith was an effective material to isolate protein species of interest according to the pI value of target proteins.

17.
Front Vet Sci ; 7: 617, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062654

RESUMO

The prevalence of antimicrobial resistance in zoonotic Salmonella is a significant ongoing concern over the world. Several reports have investigated the prevalence of Salmonella infections in the farm animals in China; however, there is only limited knowledge about the Salmonella cross-contamination in the slaughterhouses. Moreover, the application of genomic approaches for understanding the cross-contamination in the food-animal slaughterhouses is still in its infancy in China. In the present study, we have isolated 105 Salmonella strains from pig carcasses and environment samples collected from four independent slaughterhouses in Jiangsu, China. All the Salmonella isolates were subjected to whole genome sequencing, bioinformatics analysis for serovar predictions, multi-locus sequence types, antimicrobial resistance genes, and plasmid types by using the in-house Galaxy platform. The antimicrobial resistance of Salmonella isolates was determined using a minimal inhibitory concentration assay with 14 antimicrobials. We found that the predominant serovar and serogroup was S. Derby and O:4(B), with a prevalence of 41.9 and 55%, respectively. All the isolates were multidrug-resistant and the highest resistance was observed against antimicrobials tetracycline (95.4%) and trimethoprim and sulfamethoxazole (90.9%). Additionally, the colistin-resistant determinant mcr-1 gene was detected in five (4.8%) strains. Our study demonstrated the prevalence of antimicrobial resistance in Salmonella strains isolated from pig slaughterhouses in China and suggested that the genomic platform can serve as routine surveillance along with the food-chain investigation.

18.
J Integr Neurosci ; 19(3): 421-428, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33070520

RESUMO

The relationship between chronic bacterial colonization in the brain and Alzheimer's disease is attracting extensive attention. Recent studies indicated that the components of bacterial biofilm drive the amyloid-ß production. Muramyl dipeptide, the minimal bioactive peptidoglycan motif common to all bacteria, contributes to the development of many central inflammatory and neurodegenerative disorders. However, the involvement of Muramyl dipeptide in amyloid-ß production is not completely defined. In our present study, wild type mice received an intracerebroventricular injection of normal saline or Muramyl dipeptide. Data showed that the production of Aß1-42 oligomers was significantly increased after Muramyl dipeptide injection in the wild type mice or incubation of the SH-SY5Y cells with Muramyl dipeptide. Moreover, the action of Muramyl dipeptide was dose- and time-dependent. The above results suggested a possibility that the Muramyl dipeptide-induced Aß1-42 oligomer production might be related to the NOD2/p-p38 MAPK/BACE1 pathway. To confirm this, the SH-SY5Y cells were transfected with siRNA NOD2. Data showed that the transfected SH-SY5Y cells exhibited decreased expression of Aß1-42 oligomer, NOD2, p-p38 MAPK, and BACE1 after treatment with Muramyl dipeptide. Finally, SH-SY5Y cells were pretreated with SB203580, an inhibitor of the p-38-MAPK pathway. The results indicated that these pretreated SH-SY5Y cells exhibited decreased expression of Aß1-42 oligomer, p-p38 MAPK, and BACE1 after treatment with Muramyl dipeptide. In conclusion, these results suggested that Muramyl dipeptide was the trigger factor for Aß1-42 oligomer production, which probably acts via the NOD2/p-p38 MAPK/BACE1 signaling pathway.

19.
Phys Chem Chem Phys ; 22(39): 22711-22718, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33016301

RESUMO

Wafer-scale growth of the unidirectional graphene monolayer on Ge surfaces has rejuvenated the intense study of the surfaces and interfaces of semiconductors underneath graphene. Recently, it was reported that the Ge atoms in the Ge(110) surface beneath a graphene monolayer underwent a rearrangement and formed an ordered (6 × 2) reconstruction. However, a plausible atomic model related to this (6 × 2) reconstruction is still lacking. Here, by using scanning tunnelling microscopy/spectroscopy (STM/S) and density functional theory (DFT) calculations, we deeply investigated the structural and electronic properties of the Ge(110) (6 × 2) surface encapsulated by a graphene monolayer. The (6 × 2) surface reconstruction was confirmed for the post-annealing-graphene-covered Ge(110) surface via STM, and was found to be quite air-stable, owing to the protection of the graphene monolayer against surface oxidation. Our study disclosed that the topographic features of the topmost graphene monolayer and the Ge(110) surface could be selectively imaged by utilizing suitable scanning biases. According to the STM results and DFT calculations, a rational ball-and-stick model of the (6 × 2) reconstruction was successfully provided, in which an elemental building block comprising two Ge triangles and two isolated Ge atoms adsorbed on the unreconstructed ideal Ge(110) surface. Local density of states of the graphene/Ge surface was explored via scanning tunneling spectroscopy (STS), presenting four well-defined differential conductance (dI/dV) peaks, protruding at energies of 0.2, 0.4, 0.6 and 0.8 eV, respectively. The four peaks predominantly originated from the surface states of the reconstructing adatoms and were well reproduced by our theoretical simulation. This result means that the Ge surface is very robust after being encapsulated by the epitaxial graphene, which could be advantageous for directly fabricating graphene/Ge-hybrid high-speed electronics and optoelectronics based on conventional microelectronics technology.

20.
Huan Jing Ke Xue ; 41(8): 3804-3810, 2020 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-33124357

RESUMO

The impact of exogenous carbon input changes on forest soil respiration provides the basis for an intensive analysis of the forest carbon cycle. Based on a plant residue addition and removal control experiment, this study investigated the short-term soil respiration response to carbon input changes of Picea schrenkiana on the Tianshan Mountains during their growing season with five different carbon input treatments:control, double litter, no root, no litter, and no input. The results revealed that, during the entire observation period, the cumulative soil respiration rates were 3.38, 3.94, 2.65, 2.87, and 2.01 µmol·(m2·s)-1 in the double litter, control, no litter, no root, and no input treatments, respectively. Compared with the control treatment, the cumulative soil CO2 efflux increased by 402.65 g·m-2 in the double litter treatment, whereas it decreased by 515.00, 354.73, and 967.15 g·m-2 in the no litter, no root, and no input treatments, respectively. The mineral soil respiration, litterfall respiration, and root respiration contributed 59.46%, 21.49%, and 14.79%, respectively, to the total soil respiration rate. PCA analysis revealed that the soil respiration rate was positively correlated with the soil temperature, soil moisture, soil total phosphorus content, pH, and soil organic carbon content, and negatively correlated with the soil bulk density, while the soil total nitrogen content, carbon nitrogen ratio, and soil electrical conductivity had no effect on the soil respiration rate.


Assuntos
Picea , Solo , Carbono/análise , Ciclo do Carbono , China , Florestas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...