Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 576
Filtrar
1.
J Sci Food Agric ; 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35018645

RESUMO

BACKGROUND: Because many common foods are emulsions (mayonnaise, margarine, salad dressing, etc.), a better understanding of lipid oxidation is crucial for the formulation, production, and storage of the relevant consumer products. Herein, oil-in-water (O/W) and water-in-oil (W/O) emulgels were prepared and their architecture was characterized before monitoring lipid oxidation under thermally accelerated conditions to systematically compare the effect of emulsion type, oil composition and fraction on the structural as well as the lipid oxidation in thee biphasic emulgel systems. RESULTS: High susceptibility of lipids to oxidation was observed in the biphasic O/W and W/O emulgels than above 2.5 times that in soybean oil owing to an interfacial region. In the heterogeneous emulsion systems, W/O emulgels gave greater oxidation resistance than that of O/W emulgels. Comparing to oil-phase composition of high oleic sunflower, soybean and flaxseed oils, oxidation sensitivity of emulsified lipids significantly was raised as the content of unsaturation increased from 100.72 to 203.07. Moreover, increasing oil fraction from 75% to 85% led to an obviously increasing in total oxidation of O/W emulgels but a decreasing of W/O emulgels. In addition to emulsion size and oil unsaturation, viscoelasticity had a remarkable effect on the low-unsaturated oil oxidation (e.g., high oleic sunflower oil). CONCLUSION: There was an important role of physical and structural phenomena on lipid oxidation based on a mass transport principle. These findings provided novel information in designing the structures of emulsion gels for controlling lipid oxidation through the cooperation of both formulation and architecture principles. This article is protected by copyright. All rights reserved.

2.
Carcinogenesis ; 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34994389

RESUMO

The α5-nicotinic acetylcholine receptor (α5-nAChR) is closely associated with nicotine-related lung cancer, offering a novel perspective for investigating the molecular pathogenesis of this disease. However, the mechanism by which α5-nAChR functions in lung carcinogenesis remains to be elucidated. Lymphocyte antigen 6 (Ly6) proteins, like snake three-finger alpha toxins such as α-bungarotoxin, can modulate nAChR signaling. Ly6E, a member of the Ly6 family, is a biomarker of poor prognosis in smoking-induced lung carcinogenesis and is involved in the regulation of TGF-ß1/Smad signaling. Here, we explored the underlying mechanisms linking α5-nAChR and Ly6E in non-small cell lung cancer (NSCLC). The expression of α5-nAChR was correlated with Ly6 expression, smoking status and lower survival in NSCLC tissues. In vitro, α5-nAChR mediated Ly6E, the phosphorylation of the TGF-ß1 downstream molecule Smad3 (pSmad3, a key mediator of TGF-ß1 signaling), the epithelial-mesenchymal transition (EMT) markers Zeb1, N-cadherin and vimentin expression in NSCLC cells. The downregulation of Ly6E reduced α5-nAChR, pSmad3, Zeb1, N-cadherin and vimentin expression. Functionally, silencing both α5-nAChR and Ly6E significantly inhibited cell migration compared to silencing α5-nAChR or Ly6E alone. Furthermore, the functional effects of α5-nAchR and Ly6E were confirmed in chicken embryo chorioallantoic membrane (CAM) and mouse xenograft models. Therefore, our findings uncover a new interaction between α5-nAChR and Ly6E that inhibits cancer cell migration by modulating the TGF-ß1/Smad signaling pathway in NSCLC, which may serve as a novel target for therapeutic intervention.

3.
J Agric Food Chem ; 70(1): 309-318, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34958201

RESUMO

Growing interest is being dedicated to smart soft matters because of their potential in controlling bioactives upon exposure to an appropriate stimulus. Herein, structuring of edible liquid oil into oleogels and emulgels as smart thermo-triggered soft vehicles for controllable release of diverse nutrients was developed. Edible liquid oil was trapped inside the crystal network structure of phytosterols and monoglycerides resulting in bicomponent solidlike oleogels. Subsequently, both water-in-oleogel (W/O) emulgels and glycerol-in-oleogel (G/O) emulgels were further fabricated by spatial distribution of the stabilizing interfacial crystals around dispersed droplets as well as the network crystals in the continuous phase. Rheological measurements showed that the gel strength of the oleogel-based emulgels depends on the fraction of the aqueous phase and is greater than that of corresponding oleogels due to a filler effect of dispersed aqueous droplets within the crystal network, offering an additional strategy to tune the structure and rheology. Comparatively, introducing glycerol endowed a higher gel strength for the oleogel-based emulgels than water, particularly at increased filler loads. In addition, these soft matters exhibited interesting thermoresponsive nature, which exhibit the flexibility for programmed release of coencapsulated bioactive components upon exposure to an appropriate thermal triggered switchable. The resulted smart thermo-triggered soft matters have emerging opportunities for application in functional active ingredient delivery by on-demand strategies.


Assuntos
Monoglicerídeos , Fitosteróis , Glicerol , Reologia , Água
4.
Food Chem ; 370: 131030, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34507209

RESUMO

Phytosterols are commonly found in vegetable oils and possess health benefits for humans. While investigating the chemical conversion of stigmasterol at deodorisation temperatures, gas chromatography-mass spectrometry (GC-MS) and ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) experiments led to the identification of 5-ethyl-6-methyl-3-heptene-2-one, 3-hydoxy-steroid, 3-ketostigmasterol, and 3,7-diketostigmasterol as by-products. The identification of these compounds assisted in the interpretation of the stigmasterol oligomers characterised by high-pressure size exclusion chromatography (HPSEC). A similar analysis was conducted in stripped corn oil at the deodorisation temperatures. As such, 5-ethyl-6-methyl-3-heptene-2-one, 3-hydoxy-steroid, 3-ketostigmasterol and 3,7-diketostigmasterol were also detected in stripped corn oil, while the contents of 3-hydoxy-steroid and 5-ethyl-6-methyl-3-heptene-2-one were higher than those of 3-ketostigmasterol, as revealed by quantum chemical simulations. In addition, stripped corn oil exhibited the characteristic of preventing stigmasterol degradation below 200 °C, whereas it enhanced the chemical conversion (such as esterification and degradation) of stigmasterol at higher temperatures.


Assuntos
Fitosteróis , Estigmasterol , Cromatografia Líquida de Alta Pressão , Óleo de Milho , Humanos , Óleos Vegetais , Temperatura , Zea mays
5.
Food Chem ; 370: 131324, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34788959

RESUMO

A novel enzyme-catalyzed method was developed for the synthesis of phytosterol polyol esters from ß-sitosterol and polyols (sorbitol, mannitol and xylitol) by two-step transesterification using divinyl adipate (DVA) as a link. A high conversion (exceeding 94%) of ß-sitosterol with a vinyl group was achieved, in the presence of Candida rugosa lipase (CRL), at low temperature (35 °C) within 30 min. Subsequently, the maximum conversion of phytosterol polyol esters (>94%) was obtained using alkaline protease from Bacillus subtilis at 65 °C. Phytosterol polyol esters had enhanced thermal stability (up to an above 355 °C) and excellent water solubility (4.6-7.9 mM at 35 °C). Moreover, obvious increases in the bioaccessibility (41.5-63.6%) and intestinal uptake (5.2-6.5%) were observed using a simulated gastrointestinal digestion/Caco-2 cell model. These results highlighted the key role of hydrophilic structural modifications on physicochemical properties and absorption of phytosterols.


Assuntos
Fitosteróis , Células CACO-2 , Digestão , Ésteres , Humanos , Polímeros , Saccharomycetales
6.
Food Res Int ; 150(Pt A): 110757, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34865775

RESUMO

Phytosterols oleogel-based flavor emulsions were successfully fabricated for the first time using natural tea saponin as emulsifier and one-pot ultrasonic technique. The effects of ultrasonic time and power, surfactant concentration, and type of flavor oils (e.g., orange, lemon and peppermint) on the emulsion droplet size were investigated. Submicron emulsions with a dispersed phase made by flavor oil (20 wt%) + phytosterol (4 wt%) were stabilized with 3 wt% saponin were obtained by applying an ultrasonic time of 5 min and ultrasonic power of 280 W. The natural tea saponin emulsions exhibited a superior stability and encapsulation efficiency of phytosterol, compared to traditional emulsifiers. Flavor oil-phytosterol enriched powders were prepared by spray-drying and characterized by SEM, XRD and repose angle. The natural saponin encapsulated oil + phytosterol powders had excellent fluidity, redispersion behavior and low phytosterol crystallinity. It was demonstrated that ultrasound is an effective and suitable technique for fabricating fortified flavor emulsions and microcapsules, which may be used for developing functional lipids-based applications in the food, beverage and cosmetic industries.

7.
Front Microbiol ; 12: 730377, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867847

RESUMO

Ocean acidification, as one of the major consequences of global climate change, markedly affects multiple ecosystem functions in disparate marine environments from coastal habitats to the deep ocean. Evaluation of the responses of marine microbial community to the increasing partial pressure of CO2 (pCO2) is crucial to explore the microbe-driven biogeochemical processes in the future ocean. In this study, a microcosm incubation of eutrophic coastal water from Xiamen Bay under elevated pCO2 (about 1,000 µatm) and control (ambient air, about 380-410 µatm) conditions was conducted to investigate the effect of ocean acidification on the natural bacterioplankton community. During the 5-day incubation period, the chlorophyll a concentration and bacterioplankton abundance were not significantly affected by increased pCO2. Hierarchical clustering and non-metric multidimensional scaling analysis based on Bray-Curtis similarity among the bacterioplankton community derived from the 16S rRNA genes revealed an inconspicuous impact of elevated pCO2 on the bacterial community. During the incubation period, Proteobacteria, Bacteroidetes, Actinobacteria, Cyanobacteria, and Epsilonbacteraeota were predominant in all microcosms. Despite the distinct temporal variation in the composition of the bacterioplankton community during the experimental period, statistical analyses showed that no significant difference was found on bacterioplankton taxa between elevated pCO2 and control, indicating that the bacterioplankton at the population-level were also insensitive to elevated pCO2. Our results therefore suggest that the bacterioplankton communities in the fluctuating and eutrophic coastal ecosystems appear to be adaptable to the short-term elevated pCO2.

8.
Front Cardiovasc Med ; 8: 756552, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869668

RESUMO

Aim: The connection between revascularization for coronary artery disease (CAD) and the incidence of recurrent events of atrial fibrillation (AF) after ablation is unclear. This study aimed to explore the relationship between coronary revascularization and AF recurrence in patients who underwent radiofrequency catheter ablation (RFCA). Methods: Four hundred and nineteen patients who underwent performed coronary angiography at the same time as RFCA were enrolled in this study. Obstructive CAD was defined as at least one coronary artery vessel stenosis of ≥75% and percutaneous coronary intervention (PCI) was recommended. Non-obstructive CAD was defined as coronary artery vessel stenosis of <75%. The endpoint was freedom from recurrence from AF after RFCA during the 24-month follow-up. Results: In total, 102, 95, and 212 patients were undergone coronary angiography and diagnosed as having obstructive CAD, Non-obstructive CAD, and Non-CAD, respectively. During the 24-month follow-up period, patients without obstructive CAD were significantly more likely to achieve freedom from AF than patients with obstructive CAD (hazard ratio [HR]: 1.72; 95% confidence interval [CI]: 1.23-2.41; P = 0.001). The recurrence rate of AF was significantly lower in patients who underwent PCI than in those who did not (HR: 0.45; 95% CI: 0.25-0.80; P = 0.007). The multivariate regression analysis showed that the other predictors of AF recurrence for obstructive CAD were multivessel stenosis (HR: 1.92; 95% CI: 1.04-3.54; P = 0.036) and left atrial diameter (HR: 2.56; 95% CI: 1.31-5.00; P = 0.006). Conclusions: This study suggests that obstructive CAD is associated with a higher rate of AF recurrence. Additionally, For patients with CAD, coronary revascularization is related to a lower recurrence rate of AF after RFCA.

9.
Artigo em Inglês | MEDLINE | ID: mdl-34890839

RESUMO

Large-scale genome-wide association studies (GWAS) and expression quantitative trait loci (eQTLs) studies have identified multiple noncoding variants associated with genetic diseases by affecting gene expression. However, pinpointing causal variants effectively and efficiently remains a serious challenge. Here, we developed CARMEN, a novel algorithm to identify functional noncoding expression-modulating variants. Multiple evaluations demonstrated CARMEN's superior performance over state-of-the-art tools. Applying CARMEN to GWAS and eQTLs datasets further pinpoints several causal variants other than reported lead single-nucleotide polymorphisms (SNPs). CARMEN scales well with the massive datasets and is available online as a web server at http://carmen.gao-lab.org.

10.
ACS Nano ; 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34908409

RESUMO

Numerous emerging applications in modern society require humidity sensors that are not only sensitive and specific but also durable and intelligent. However, conventional humidity sensors do not have all of these simultaneously because they require very different or even contradictory design principles. Here, inspired by camel noses, we develop a porous zwitterionic capacitive humidity sensor. Relying on the synergistic effect of a porous structure and good chemical and thermal stabilities of hygroscopic zwitterions, this sensor simultaneously exhibits high sensitivity, discriminability, excellent durability, and, in particular, the highest respond speed among reported capacitive humidity sensors, with demonstrated applications in the fast discrimination between fresh, stale, and dry leaves, high-resolution touchless human-machine interactive input devices, and the real-time monitoring humidity level of a hot industrial exhaust. More importantly, this sensor exhibits typical synapse behaviors such as paired-pulse facilitation due to the strong binding interactions between water and zwitterions. This leads to learning and forgetting features with a tunable memory, thus giving the sensor artificial intelligence and enabling the location of water sources. This work offers a general design principle expected to be applied to develop other high-performance biochemical sensors and the next-generation intelligent sensors with much broader applications.

11.
J Microbiol Biotechnol ; 32(2)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34954697

RESUMO

Deciphering the metabolites of human diseases is an important objective of biomedical research. Herein, we aimed to capture the core metabolite of fanconi anemia (FA) using a bioinformatics method, multi-omics composite network. On the basis of the assumption that metabolite levels can straightly mirror the physiological state of the human body, we used a bioinformatics method, namely, the multi-omics composite network that integrates human gene-gene interactions, disease phenotype-phenotype interactions, disease-related metabolites-metabolites, gene-phenotype interactions, gene-metabolites interactions, and metabolites-phenotype interactions to procure the core metabolite of FA. This method is applicable to predict and optimize disease candidate metabolites, which is effective in the network without known disease metabolites. In this report, we firstly singled out the differentially expressed genes upon different groups that were related with FA and then constructed the multi-omics composite network of FA by integrating the aforementioned six networks. Ultimately, we utilized random walk with restart (RWR) to screen the optimized candidate metabolites of FA, and meanwhile the co-expression gene network of FA was also obtained. As a result, the top 5 metabolites of FA were Tenormin (TN), Guanosine 5'-triphosphate, Guanosine 5'-diphosphate, Triphosadenine (DCF) and Adenosine 5'-diphosphate, which have been reported to have direct or indirect relationship with FA. Furthermore, the top 5 co-expressed genes were CASP3, BCL2, HSPD1, RAF1 and MMP9. The multi-omics composite network in prioritizing the metabolites could provide us with some more indicators closely linked to FA.

12.
Microbiol Spectr ; 9(3): e0071621, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34937194

RESUMO

Studies involving the pathogenic organism Mycobacterium tuberculosis routinely require advanced biosafety laboratory facilities, which might not be readily available in rural areas where tuberculosis burdens are high. Attempts to adapt heat inactivation techniques have led to inconsistent conclusions, and the risk of protein denaturation due to extensive heating is impractical for subsequent mass spectrometry (MS)-based protein analyses. In this study, 240 specimens with one or two loops of M. tuberculosis strain H37Rv biomass and specific inactivated solutions were proportionally assigned to six heat inactivation methods in a thermal block at 80°C and 95°C for 20, 30, and 90 min. Twenty untreated specimens served as a positive control, and bacterial growth was followed up for 12 weeks. Our results showed that 90 min of heat inactivation was necessary for samples with two loops of biomass. Further protein extraction and a matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS assay demonstrated adequate scores for bacterial identification (≥1.7), with the highest score achieved in the 80°C/90 min and 95°C/30 min treatment groups. A proteomics study also confidently identified 648 proteins with ∼93% to 96% consistent protein abundances following heating at 95°C for 20, 30, and 90 min. Heat inactivation at 95°C for 90 min yielded the most quantifiable proteins, and a functional analysis revealed proteins located in the ribosomal subunit. In summary, we proposed a heat inactivation method for the M. tuberculosis strain H37Rv and studied the preservation of protein components for subsequent bacterial identification and protein-related assays. IMPORTANCE Inactivation of Mycobacterium tuberculosis is an important step to guarantee biosafety for subsequent M. tuberculosis identification and related research, notably in areas of endemicity with minimal resources. However, certain biomolecules might be denatured or hydrolyzed because of the harsh inactivation process, and a standardized protocol is yet to be determined. We evaluated distinct heating conditions to report the inactivation efficiency and performed downstream mass spectrometry-based M. tuberculosis identification and proteomics study. The results are important and useful for both basic and clinical M. tuberculosis studies.

13.
Org Lett ; 23(22): 8744-8749, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34723556

RESUMO

A modular strategy to access the remote fluoroalkylated azaarene derivatives and the α-deuterated analogues, which are the isosteres of many pharmaceutically important compounds, is reported. Transformations under the sustainable photoredox catalysis platform could efficiently experience cascade radical addition, 1,n-hydrogen atom transfer (HAT), and single-electron reduction to offer the crucial anions α to azaarenes. Through reacting with H2O or the inexpensive D2O, two series of valuable products were obtained in high yields with substantial deuterium incorporation. The work demonstrates that the HAT of the α-sp3 C-H of the electron-withdrawing azaarenes with alkyl radicals is viable.

14.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(11): 1077-1080, 2021 Nov 10.
Artigo em Chinês | MEDLINE | ID: mdl-34729747

RESUMO

OBJECTIVE: To explore the genetic basis for a pedigree affected with Nance-Horan syndrome. METHODS: Clinical manifestation of the patients was analyzed. Genomic DNA was extracted from peripheral blood samples of the pedigree members and 100 unrelated healthy controls. A panel of genes for congenital cataract was subjected to next-generation sequencing (NGS), and candidate variant was verified by Sanger sequencing and bioinformatic analysis based on guidelines of American College of Medical Genetics and Genomics (ACMG). mRNA expression was determined by reverse transcriptase-PCR (RT-PCR). Linkage analysis based on short tandem repeats was carried out to confirm the consanguinity. RESULTS: A small insertional variant c.766dupC (p.Leu256Profs*21) of the NHS gene was identified in the proband and his affected mother, but not among unaffected members and the 100 healthy controls. The variant was unreported in Human Gene Mutation Database (HGMD) and other databases. Based on the ACMG guideline, the variant is predicted to be pathogenic (PVS1+PM2+PM6+PP4). CONCLUSION: The novel variant c.766dupC of the NHS gene probably underlay the X-linked dominant Nance-Horan syndrome in this pedigree.


Assuntos
Catarata , Doenças Genéticas Ligadas ao Cromossomo X , Anormalidades Dentárias , Catarata/congênito , Catarata/genética , Humanos , Mutação , Linhagem , Medicina Estatal
15.
Nat Neurosci ; 24(12): 1686-1698, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34782794

RESUMO

Memory persistence is a fundamental cognitive process for guiding behaviors and is considered to rely mostly on neuronal and synaptic plasticity. Whether and how astrocytes contribute to memory persistence is largely unknown. Here, by using two-photon Ca2+ imaging in head-fixed mice and fiber photometry in freely moving mice, we show that aversive sensory stimulation activates α7-nicotinic acetylcholine receptors (nAChRs) in a subpopulation of astrocytes in the auditory cortex. We demonstrate that fear learning causes the de novo induction of sound-evoked Ca2+ transients in these astrocytes. The astrocytic responsiveness persisted over days along with fear memory and disappeared in animals that underwent extinction of learned freezing behavior. Conditional genetic deletion of α7-nAChRs in astrocytes significantly impaired fear memory persistence. We conclude that learning-acquired, α7-nAChR-dependent astrocytic responsiveness is an integral part of the cellular substrate underlying memory persistence.

16.
Insur Math Econ ; 101: 359-383, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34803199

RESUMO

The repeated history of pandemics, such as SARS, H1N1, Ebola, Zika, and COVID-19, has shown that pandemic risk is inevitable. Extraordinary shortages of medical resources have been observed in many parts of the world. Some attributing factors include the lack of sufficient stockpiles and the lack of coordinated efforts to deploy existing resources to the locations of greatest need. This paper investigates contingency planning and resources allocation from a risk management perspective, as opposed to the prevailing supply chain perspective. The key idea is that the competition for limited critical resources is not only present in different geographical locations but also at different stages of a pandemic. This paper draws on an analogy between risk aggregation and capital allocation in finance and pandemic resources planning and allocation for healthcare systems. The main contribution is to introduce new strategies for optimal stockpiling and allocation balancing spatio-temporal competition for medical supply and demand.

17.
Environ Int ; 158: 106950, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34715430

RESUMO

Viruses saturate environments throughout the world and play key roles in microbial food webs, yet how viral activities affect dissolved organic matter (DOM) processing in natural environments remains elusive. We established a large-scale long-term macrocosm experiment to explore viral dynamics and their potential impacts on microbial mortality and DOM quantity and quality in starved and stratified ecosystems. High viral infection dynamics and the virus-induced cell lysis (6.23-64.68% d-1) was found in the starved seawater macrocosm, which contributed to a significant transformation of microbial biomass into DOM (0.72-5.32 µg L-1 d-1). In the stratified macrocosm, a substantial amount of viral lysate DOM (2.43-17.87 µg L-1 d-1) was released into the upper riverine water, and viral lysis and DOM release (0.35-5.75 µg L-1 d-1) were reduced in the mixed water layer between riverine water and seawater. Viral lysis was stimulated at the bottom of stratified macrocosm, potentially fueled by the sinking of particulate organic carbon. Significant positive and negative associations between lytic viral production and different fluorescent DOM components were found in the starved and stratified macrocosm, indicating the potentially complex viral impacts on the production and utilization of DOM. Results also revealed the significant viral contribution to pools of both relatively higher molecular weight labile DOM and lower molecular weight recalcitrant DOM. Our study suggests that viruses have heterogeneous impact on the cycling and fate of DOM in aquatic environments.

18.
Neuroreport ; 32(17): 1341-1348, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34718248

RESUMO

OBJECTIVES: Neuroinflammation and apoptosis are two key factors contributing to early brain injury (EBI) after subarachnoid hemorrhage (SAH) and are strongly associated with a poor prognosis. Recently, equilibrative nucleoside transporter 1 (ENT1) was emerged to accelerate the severity of inflammation and cell apoptosis in several nervous system diseases, including cerebral ischemia, neurodegeneration and epilepsy. However, no study has yet elaborated the expression levels and effects of ENT1 in EBI after SAH. METHODS: Sprague-Dawley rats were subjected to SAH by endovascular perforation. Nitrobenzylthioinosine (NBTI) was intranasally administered at 0.5 h after SAH. The protein expression levels of ENT1, NLRP3, Bcl2, Bax, ACS, Caspase-1, IL-1 were detected by western blot. The modified Garcia score and beam balance score were employed to evaluate the neurologic function of rats following SAH. In addition, hematoxylin-eosin, fluoro-jade C and TdT-mediated dUTP nick-end labeling staining were then used to evaluate brain tissue damage and neuronal apoptosis. RESULTS: Analysis indicated that endogenous levels of ENT1 were significantly upregulated at 24-hour post-SAH, accompanied by NLRP3 inflammasome activation and Bcl2 decline. The administration of NBTI, an inhibitor of ENT1, at a dose of 15 mg/kg, ameliorated neurologic deficits and morphologic lesions at both 24 and 72 h after SAH. Moreover, ENT1 inhibition efficiently mitigated neuronal degeneration and cell apoptosis. In addition, NBTI at 15 mg/kg observably increased Bcl2 content and decreased Bax level. Furthermore, suppression of ENT1 notably reduced the expression levels of NLRP3, apoptosis associated speck like protein containing CARD, caspase-1 and IL-1ß. CONCLUSIONS: NBTI relieved SAH-induced EBI partly through ENT1/NLRP3/Bcl2 pathway.

19.
Cell Metab ; 33(11): 2122-2125, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34619075

RESUMO

Over the last few decades, China has witnessed a great leap in economic growth and social welfare. Unfortunately, Chinese people have also been affected by a pandemic of over-nutrition, lack of physical activity, and increasing prevalence of metabolic disorders including obesity, diabetes, non-alcohol fatty liver disease, and cardiovascular disease. For instance, China currently has the largest number of diabetic patients (∼116 million) in the world. The fire of metabolic disorders is further fanned by the increased aging population, according to the survey results from the National Bureau of Statistics. On the other hand, progress in metabolic research has also made big strides. Here, we offer a glimpse at metabolic research in China, including not only its status quo but also its prospects, which aims to make significant contributions to our understanding of metabolism from bench to bedside.

20.
Food Funct ; 12(20): 9763-9772, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34664580

RESUMO

Feruloyl glycerol (FG) is the hydrophilic ester of ferulic acid (FA), which has a high solubility in water and a strong ability to resist ultraviolet (UV) radiation. In this work, several solid acids were used as novel economical catalysts and FA was used as a cheap substrate for FG preparation. The effects of reaction variables on the esterification of FA with glycerol were investigated and optimized by response surface methodology (RSM). Results showed that a cheap solid acid cation exchange resin A-35 showed the best performance for esterification. The reaction conditions were optimized by RSM as follows: 15 : 1 (glycerol/FA) substrate molar ratio and 14% catalyst loading at 90 °C for 7 h. The maximum FG yield (98.50 ± 0.58%) was achieved under the optimized conditions. The activation energy of the esterification was 53.71 kJ mol-1. The results of UV absorbance showed that FG had good anti-UV activity and photostability, which can be used as a potential antioxidant and UV absorber in food and sunscreen products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...