Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.278
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 304: 123291, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639808

RESUMO

In this study, a novel fluorescent sensor, N,N-dimethyl-4-((2-(8-m-ethyl-9-(naphthalen-1-yl)-9H-purin-6-yl)hydrazineylidene)methyl)aniline(PHA), which was constructed via Schiff base reaction of purine derivatives and dimethylaminobenzaldehyde. This probe showed significant selective fluorescence quenching of Cu2+, and accompanying with an increase in Cu2+ concentration and a change in solution color from colorless to yellow. The outstanding features of PHA include low detection limit (0.429 µM), strong anti-interference ability and fast response time. We further investigated the chelation mechanism of PHA and Cu2+ by Job's plot experiment, density generalization theory (DFT), and the probe PHA can form a 1:2 complex with Cu2+ ions, leading to a fluorescence quenching process, thus realizing the rapid detection of Cu2+. In addition, this new fluorescent sensor [PHA-Cu2+] can be used to detect pesticide residues in solution. When the [PHA-Cu2+] system was mixed with glyphosate solution, that a fluorescence recovering was observed. This may be because glyphosate chelates more strongly with Cu2+ ions, making the copper ions dissociated from the [PHA-Cu2+] system. The detection limit of the fluorescent sensor [PHA-Cu2+] for glyphosate was 18.77 nM. Finally, the sensor system has been successfully applied in fluorescence imaging of glyphosate in living cells.

2.
J Ethnopharmacol ; 318(Pt B): 117013, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572927

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jianpi Yangzheng decoction (JPYZ) possesses a potential anti-tumor activity in gastric cancer. However, potential effect of JPYZ on regulating tumor-associated macrophage (TAM)-derived exosomes to affect gastric cancer is still unclear. AIM OF STUDY: We aimed to clarify the role of tumor-associated macrophage derived exosomes (TAM-exos) in invasive and metastasis of gastric cancer and the mechanism of JPYZ regulate TAM-exos against gastric cancer. MATERIALS AND METHODS: Flow cytometry was performed to demonstrate whether JPYZ involved in TAM polarization. After JPYZ treatment, TAM conditioned medium (TAM-CM)/TAM-exos were co-cultured with gastric cancer cells and were detected by wound healing and transwell assay. Transcriptome sequencing and bioinformatics analysis predicted the exosomal miRNA after JPYZ intervention in TAM. miRNA mimic and inhibitor were used to verify the effect of miRNA in exosomes on gastric cancer cells. Q-PCR and luciferase reporter assay were employed to clarify the targeting relationship between miRNA and target gene. Western blot assay detected the expression levels of epithelial-mesenchymal transition (EMT) markers and related signaling pathways proteins. RESULTS: We firstly demonstrated that TAM-CM intervened by JPYZ significantly inhibited the invasion and migration of gastric cancer. Furthermore, exosomes in TAM supernatants play a key role in migration of gastric cancer. Meanwhile, transcriptome sequencing and q-PCR revealed that miR-513b-5p expression was significantly reduced in TAM-exos intervened by JPYZ. And miR-513b-5p in TAM aggravated TAM-exos mediated invasion and migration of gastric cancer cells, the inhibitor of miR-513b-5p reversed TAM-exos mediated promotion. Bioinformatics analysis and luciferase reporter assay confirmed that PTEN was a direct target of miR-513b-5p in gastric cancer. MiR-513b-5p inhibited PTEN to activate AKT/mTOR signaling pathway thus promoting gastric cancer invasion and metastasis in vivo and in vitro. Importantly, JPYZ inhibited TAM derived exosomal miR-513b-5p, and alleviated AKT/mTOR activation by PTEN depended manner in gastric cancer. CONCLUSION: TAM-exos containing miR-513b-5p lead to gastric cancer invasion and migration. Our findings clarify a novel TAM-exos mechanism of JPYZ for inhibiting gastric cancer progression.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Macrófagos Associados a Tumor/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Proteínas Proto-Oncogênicas c-akt , MicroRNAs/genética , MicroRNAs/metabolismo , Serina-Treonina Quinases TOR/genética , Proliferação de Células
3.
J Hazard Mater ; 463: 132940, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37951172

RESUMO

The identification and determination of benzene, toluene, ethylbenzene, and xylene (BTEX) has always been a formidable challenge for chemiresistive metal oxide sensors owing to their structural similarity and low reactivity, as well as the intrinsic cross sensitivity of metal oxides. In this paper, a temperature-modulated sensing strategy is proposed for the identification and determination of BTEX using a high-performance chemiresistive sensor. Ultrafine Au nanoparticle-loaded porous ZnO nanobelts as sensing materials were synthesized through an exchange reaction followed by thermal oxidation, which exhibited high response toward BTEX. Under dynamic modulation of working temperature, the distinguishable characteristic curves were demonstrated for each BTEX compound. By employing the linear discrimination and convolutional neural network analyses, highly effective BTEX identification was achieved among all investigated volatile organic compounds, which is difficult to realize for single chemiresistive sensors at constant working temperatures. Furthermore, quantitative analysis of BTEX concentrations was accomplished by establishing the relationship between concentration and response at specific points on their response curves. This developed strategy is expected to pave a new way for constructing highly sensitive gas sensors for the identification and analysis of hazardous gases, thereby enhancing their applicability in environmental monitoring.

4.
Oncol Rep ; 51(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37997815

RESUMO

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that the colony formation data shown in Fig. 2C on p. 333 had already appeared in previously published articles written by different authors at different research institutes. Owing to the fact that the contentious data in the above article had already been published prior to its submission to Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 39: 331­337, 2018; DOI: 10.3892/or.2017.6099].


Assuntos
Melanoma , MicroRNAs , Neoplasias Cutâneas , Humanos , Melanoma/genética , Neoplasias Cutâneas/genética , Divisão Celular , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética
5.
6.
Plant Dis ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037209

RESUMO

Polygonatum cyrtonema Hua, a perennial plant of the Asparagaceae family, is an important herb in Chinese medicine and is mainly grown in the Chinese provinces of Guizhou, Hunan, Yunnan, Anhui, and Zhejiang (Chen et al. 2021). In June 2021, a new case of leaf spot disease was detected in an 80 m2 plantation of P. cyrtonema on Xuefeng Mountain, Huaihua City, Hunan Province (27°17'30″N, 110°24'20″E). It infected almost 40% of the total planted area. Initially, irregular light brown spots appeared on the leaves, gradually turning dark brown and coalescing to form large necrotic areas, after which the affected plant turned yellow and eventually died. Ten disease samples were collected from ten plants in the plantation area. The leading edge of necrotic tissues were rinsed with sterile water and then disinfected with 3% hydrogen peroxide for 30 s, followed by 75% ethanol for 90 s, and rinsed three times with sterile water. Samples were then placed on water agar plates and incubated in the dark in a constant temperature incubator at 28 ℃ for 3-5 days. After mycelial growth was observed in the media, the hyphae were transferred to potato dextrose agar plates and incubated for 3-5 days at 28 ℃ in the dark. Ultimately, 12 purified fungal isolates were obtained, some of which were morphologically similar, including 10 that were Alternaria (83.3% isolation rate). Three representative isolates (HJYB1, HJYB2, and HJYB3) were selected for further study. The initial colonies were grayish green with white fluffy mycelia on the surface and a prominent white rim, which became brown with dense, cottony aerial mycelia as the colonies matured. The conidia were obpyriform or ellipsoidal, pale to dark brown, with 0-4 transverse and 0-3 longitudinal septa, some with a short cylindrical beak at the tip. They measured 11.826-28.873 × 6.231-26.018 µm (n = 100). To further confirm the identity of the isolates, their rDNA internal transcribed spacer region (ITS), ß-microtubulin (TUB2) and translation elongation factor-1 (TEF-1) genes were amplified and sequenced using the ITS4/ITS5, TUB2F/R and EF-526F/1567R primers, respectively (Hong et al. 2006). The sequences were submitted to GenBank (ITS: OR513924, OR513964, OR519874; TUB2: OR526928, OR533421, OR526929; TEF: OR526926, OR533420, OR526927). A concatenated phylogenetic tree of the three genes showed that the isolate clustered significantly with Alternaria alternata. Based on morphological identification and phylogenetic tree analysis, the isolate was identified as A. alternata. We carried out pathogenicity tests on four uniformly growing P. cyrtonema plants. Three of these plants were used as experimental plants and one as a control. For each plant, three young leaves were selected and inoculated with 6 × 6 mm PDA blocks, while sterile PDA blocks were used as controls. The treated plants were subjected to 10 days of stable temperature in a climatic chamber set at 28°C, 80% constant relative humidity and 12 hours of light per day. The pathogenic lesions appeared and the pathogens re-isolated from the diseased leaves showed similar morphological characteristics to representative isolates and were confirmed as A. alternata by DNA sequencing, thus fulfilling Koch's postulates. A. alternata is the major causal agent of leaf spot on P. sibiricum (Zou et al. 2023) and Agrimonia pilosa (Jiang et al. 2023). As far as we know, leaf necrosis caused by A. tenuissima has been found on P. cyrtonema (Li et al. 2020). To our knowledge, this is the first report of A. alternata causing leaf spot disease in P. cyrtonema. These findings form the basis for the management of this leaf spot disease.

7.
Biology (Basel) ; 12(11)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37998032

RESUMO

As the intensive development of aquaculture persists, the demand for fishmeal continues to grow; however, since fishery resources are limited, the price of fishmeal remains high. Therefore, there is an urgent need to develop new sources of protein. They are rich in proteins, fatty acids, amino acids, chitin, vitamins, minerals, and antibacterial substances. Maggot meal-based diet is an ideal source of high-quality animal protein and a new type of protein-based immune enhancer with good application prospects in animal husbandry and aquaculture. In the present study, we investigated the effects of three different diets containing maggot protein on the growth and intestinal microflora of Litopenaeus vannamei. The shrimp were fed either a control feed (no fly maggot protein added), FM feed (compound feed with 30% fresh fly maggot protein added), FF feed (fermented fly maggot protein), or HT feed (high-temperature pelleted fly maggot protein) for eight weeks. The results showed that fresh fly maggot protein in the feed was detrimental to shrimp growth, whereas fermented and high-temperature-pelleted fly maggot protein improved shrimp growth and survival. The effects of different fly maggot protein treatments on the intestinal microbiota of L. vannamei also varied. Fermented fly maggot protein feed and high-temperature-pelleted fly maggot protein feed increased the relative abundance of Ruegeria and Pseudomonas, which increased the abundance of beneficial bacteria and thus inhibited the growth of harmful bacteria. In contrast, fresh fly maggot proteins alter the intestinal microbiome, disrupting symbiotic relationships between bacteria, and causing invasion by Vibrio and antibiotic-resistant bacteria. These results suggest that fresh fly maggot proteins affect the composition of intestinal microorganisms, which is detrimental to the intestinal tract of L. vannamei, whereas fermented fly maggot protein feed affected the growth of L. vannamei positively by improving the composition of intestinal microorganisms.

8.
Am J Infect Control ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38007100

RESUMO

BACKGROUND: The COVID-19 outbreak in China exposed healthcare workers (HCWs) to increased risk of infection. The acquired immunity rapidly diminishes after the previous COVID-19 vaccination and the second booster vaccination has been recommended in several countries. HCWs are a priority group for vaccination because they are at increased risk of being infected, however, certain amount of HCWs were hesitant. METHODS: The survey was conducted among 5805 HCWs in China from January 5 to February 9, 2023. Questionnaire included socio-demographic information, COVID-19 related variables, psychological factors, and the COVID-19 vaccine hesitancy scale. Multiple logistic regression analysis was used to assess the influencing factors of the second dose of COVID-19 vaccine booster hesitancy. RESULTS: 42.2% of HCWs self-reported having the second dose of COVID-19 vaccine booster hesitancy. Occupations, years of working, COVID-19 infection status were associated with less vaccine hesitancy. HCWs who had received 3 doses of COVID-19 vaccine were less likely to be hesitant compare to those had not received. HCWs with PTSD symptoms and anxiety symptoms were more likely to be hesitant. No relation was observed between COVID-19 vaccine booster hesitancy and age, marriage, salary and perceived an increased risk of COVID-19 infection due to work (all P>0.05). CONCLUSIONS: A considerable proportion of HCWs were hesitant to accept the second dose of COVID-19 booster vaccine. Incorporating vaccine knowledge and new evidence into routine health educations and procedures to raise confidence and reduce complacency may be effective and feasible in promoting the vaccination and implementing future vaccination programmes.

9.
J Chromatogr A ; 1713: 464536, 2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38029659

RESUMO

The concentration of carbazoles in highly mature crude oil is quite low, making it challenging to separate carbazole compounds for the gas chromatography-mass spectrometry (GC-MS) detection. This study presents a small-scale column chromatography method for separating carbazoles from highly mature crude oil using silica gel as a solid phase adsorbent and a Pasteur pipette as a separation device. The carbazole-rich crude oil from the Pearl River Mouth Basin was selected to explore the impact of reagent polarity and injection mode on the separation of carbazoles. The oil sample was eluted with solvents mixed with different volume proportions of n-hexane and dichloromethane and each eluted fraction was collected for GC-MS testing. The results indicated that increasing the reagent polarity caused the aromatic hydrocarbons and carbazole compounds in crude oil to be eluted sequentially. Most aromatic compounds in the crude oil could be selectively eluted using a reagent polarity ratio of 9:1 (Vn-hexane: Vdichloromethane), with no carbazole compounds. A significant amount of carbazole compounds were eluted in the polar segments of 8:2-6:4, with the eluted carbazoles concentration accounting for more than 98 % of the total concentration. Moreover, the concentration and recovery of carbazoles eluted by direct injection mode were about 10 % higher than those after adsorption by silica gel. The standard deviation of the parameter ratio for the separated carbazole compounds in the three groups of repeatable parallel experiments was less than 0.2 %. Our method is superior to traditional two-step method and C18 column method in separation efficiency and damage to human body. This method can be applied to both highly mature crude oil and other kinds of oils including biodegradable oil. It could be a versatile method for the carbazoles separation and provide technical support in unveiling the geochemical implications of these compounds in complex areas.

10.
Ann Med ; 55(2): 2284384, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38010798

RESUMO

BACKGROUND: Interleukin (IL)-6 is a pro-inflammatory cytokine that plays an important role in preterm birth (PTB), Several meta-analyses investigated the association between IL-6 and PTB, but definitive conclusion has not yet been achieved. This updated meta-analysis aimed to ascertain the association between IL-6 and PTB by examining IL-6 levels in both normal birth and PTB groups. MATERIAL AND METHODS: Prospective cohort studies were retrieved in PubMed, Embase, and the Cochrane library from their inception until 18 February 2020. The primary outcome was the association between IL-6 and PTB, and secondary outcomes were the association between IL-6 and spontaneous PTB. RESULTS: Nine studies involving 1904 patients were included. Overall, IL-6 from different sample types (maternal blood, amniotic fluid and cervicovaginal fluid) was associated with PTB (standard mean difference [SMD]: 0.86, 95% confidence interval [CI]: 0.32 to 1.39, p < 0.001). Furthermore, the association was significant for IL-6 only in amniotic fluid (SMD: 1.87, 95%CI: 0.82 to 2.93, p < 0.001) and cervicovaginal fluid (SMD: 0.46, 95%CI: 0.09 to 0.84, p = 0.022), but not significant in maternal blood (SMD: -0.11, 95%CI: -0.57 to 0.34, p = 0.623). In addition, IL-6 was also associated with spontaneous PTB (SMD: 1.57, 95% CI: 0.18 to 2.95, p < 0.001). CONCLUSIONS: Based on the available evidence, IL-6 in amniotic fluid and cervicovaginal fluid might be useful for predicting preterm birth.


KEY MESSAGESBased on the available evidenceIL-6 in amniotic fluid and cervicovaginal fluid might be useful for predicting preterm birth.


Assuntos
Nascimento Prematuro , Feminino , Humanos , Recém-Nascido , Nascimento Prematuro/epidemiologia , Interleucina-6 , Estudos Prospectivos , Citocinas , Líquido Amniótico/química
11.
Biomaterials ; 304: 122384, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38016334

RESUMO

siRNA has demonstrated a promising paradigm for therapy of acute lung injury(ALI). However, the pulmonary mucus layer barrier powerfully hinders the therapeutic efficacy. Herein, we proposed to use dual drive power to enhance the mucus permeation of siRNA by constructing the neutral and targeted selenium nanozymes therapeutic system. The multifunctional selenium nanozymes (CWP-Se@Man) were synthesized by modifying with cationic water-soluble pillar arene (CWP) and mannose (Man). After loading CCR2-siRNA, the CWP-Se@Man reached electroneutrality that co-driven by electroneutrality and targeting, the mucus permeation capacity of CWP-Se@Man enhanced by ∼15 fold, thus effectively penetrate pulmonary mucus layer and deliver CCR2-siRNA into macrophages. Moreover, with optimizing the composition of CWP-Se@Man made of CWP (Slutsky, 2013) [5] or CWP (Ichikado et al., 2012) [6], the therapeutic system CWP (Ichikado et al., 2012) [6]-Se@Man showed better biological activities due to smaller size. In inflamed modes, the CWP-Se@Man nanotherapeutic systems loading CCR2-siRNA not only exerted pronounced anti-inflammatory effect through combining inhibit the chemotactic effect and ROS, but also effectively against ALI after blocking the circulatory effect of ROS and inflammatory cytokines. Therefore, this strategy of dual-driving force penetration mucus renders a unique approach for mediating trans-mucus nucleic acid delivery in lungs, and provide a promising treatment for the acute lung injury therapy.

12.
Sci Total Environ ; : 168798, 2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38016557

RESUMO

Lake browning is widespread due to increased supply of dissolved organic carbon under climate warming and nitrogen deposition. However, multi-trophic level responses to lake browning are poorly understood. Our study aims to explore such responses across multitrophic levels based on sedimentary records of diatoms, chrysophyte stomatocysts and chironomids in a remote headwater lake in the Three Gorges Reservoir region, central China. Although all biotic proxies were analysed in the same core, the timing of shifts in chironomids (1886 ±â€¯18 CE) preceded that in chrysophyte stomatocysts (~1914 ±â€¯10 CE) and diatoms (~1941 ±â€¯6 CE). Shifts in biotic communities were closely linked to rising temperature, δ15N depletion (a proxy for nitrogen deposition), δ13C enrichment (a proxy for littoral moss expansion), as well as biotic interactions, whereas the relative importance of the driving forces varied among the three biotic groups. Our results suggest that the zoobenthos grazing effect might be more important than bottom-up pathways in humic environments. Additionally, the coexistence of benthic, littoral and pelagic algae after the 1950s suggested that mixotrophic chrysophytes could reduce lake browning through heterotrophic processes and sustain the ecological equilibrium between littoral, pelagic and benthic productivity. Therefore, lake browning ecosystem regime shifts require analyses of multiple trophic levels. Our results suggest that heterotrophy may become more important in lake ecosystem carbon cycling with water brownification in Mulong Lake, as well as similar montane lakes.

13.
Aging (Albany NY) ; 15(21): 12513-12536, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37950729

RESUMO

Recent years have seen a sharp rise in the amount of research on the connection between oxidative stress, autophagy, and cancer cells. However, the significant functions of oxidative stress and autophagy-related genes (OARGs) in gastric cancer (GC) are yet to be investigated integrally. Therefore, it will be a new and promising concept to search for novel OARG-related biomarkers to predict the prognosis and treatment response of GC. First, we assessed changes in prognosis and tumor microenvironment (TME) characteristics across the various oxidative stress and autophagy-related modification patterns based on a detailed analysis of 17 OARGs with prognostic significance of 808 GC samples. We identified three distinct OARG alteration patterns which displayed unique biological characteristics and immune cell infiltration features. Using principal component analysis methods, the OARGscore was developed to evaluate the OARG modification patterns of certain tumors. The negative connection between OARGscore and immune cells was statistically significant. Increased survival, a higher incidence of mutations, and a better response to immunotherapy were all predicted to be related to patients' high-OARGscore. In addition, the candidate chemotherapeutic drugs were predicted using the oncoPredict program. The low-OARGscore group was predicted to benefit more from Ribociclib, Alisertib, Niraparib, Epirubicin, Olaparib, and Axitinib, while patients in the high-OARGscore group were predicted to benefit more from Afatinib, Oxaliplatin, Paclitaxel, 5-Fluorouracil, Dabrafenib and Lapatinib. Our findings offer a specific method for predicting a patient's prognosis and susceptibility to immunotherapy, as well as a promising insight of oxidative stress and autophagy in GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Microambiente Tumoral/genética , Autofagia/genética , Fluoruracila , Afatinib , Prognóstico
14.
ACS Nano ; 17(22): 22960-22978, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37930276

RESUMO

Infected bone defects (IBDs) exhibit impaired healing due to excessive inflammation triggered by pathogen-associated molecular patterns (PAMPs) from bacteria. As a vital factor in orchestrating immune responses, mitochondrial homeostasis maintenance is central to inflammation blockade. This research developed a chameleon-like nanoplatform by covering hydroxyapatite nanoparticles with a cerium ion coordinated tannic acid supramolecular network (HA@Ce-TA), which adaptively functions to regulate mitochondrial homeostasis based on intra- and extracellular environments. Extracellularly, acidic conditions activate HA@Ce-TA's peroxidase/oxidase-mimicking activity to produce reactive oxygen species (ROS), and external near-infrared (NIR) irradiation excites nanoscale Ce-TA to produce hyperthermia, which is found and explained by chemical computation. ROS production with photothermal therapy can eliminate bacteria effectively and reduce mitochondrial stress. Intracellularly, HA@Ce-TA remodels mitochondrial dynamics by upregulating mitochondrial fusion genes and eliminates excessive ROS by mimicking superoxidase/catalase. Consequently, this comprehensive modulation of mitochondrial homeostasis inhibits inflammasome overactivation. In vitro and in vivo studies showed HA@Ce-TA can modulate the mitochondria-centered inflammatory cascade to enhance IBD treatment, highlighting the potential of engineering nanotherapeutics to recalibrate mitochondrial homeostasis as an infected disease-modifying intervention.


Assuntos
Mitocôndrias , Nanopartículas , Humanos , Espécies Reativas de Oxigênio/farmacologia , Nanopartículas/química , Antioxidantes/farmacologia , Inflamação , Homeostase
15.
Angew Chem Int Ed Engl ; : e202316393, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37986261

RESUMO

We report in this paper a Pd(II)-catalyzed migratory gem-fluorolactonization of ene-carboxylic acids. Reaction of 4-methylenealkanoic acid derivatives with Selectfluor in the presence of Pd(OAc)2 (1.0 mol %) at room temperature affords fluorolactones in good to excellent yields. 2-(2-Methylenecycloalkanyl)acetic acids are transformed to bridged fluorolactones under identical conditions. One C-C, one C-O and one tertiary C-F bond were generated along the gem-disubstituted carbon-carbon double bond in this operationally simple transformation. Trapping experiments indicates that the reaction is initiated by a 5-exo-trig oxypalladation followed by Pd oxidation, regioselective ring-enlarging 1,2-alkyl/Pd(IV) dyotropic rearrangement and C-F bond forming reductive elimination cascade. Post-transformations of these fluorolactones taking advantage of the electrophilicity of the 1-fluoroalkylcarboxylate function are also documented.

16.
Pharmaceutics ; 15(11)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38004601

RESUMO

Biomimetic delivery systems (BDSs), inspired by the intricate designs of biological systems, have emerged as a groundbreaking paradigm in nanomedicine, offering unparalleled advantages in therapeutic delivery. These systems, encompassing platforms such as liposomes, protein-based nanoparticles, extracellular vesicles, and polysaccharides, are lauded for their targeted delivery, minimized side effects, and enhanced therapeutic outcomes. However, the translation of BDSs from research settings to clinical applications is fraught with challenges, including reproducibility concerns, physiological stability, and rigorous efficacy and safety evaluations. Furthermore, the innovative nature of BDSs demands the reevaluation and evolution of existing regulatory and ethical frameworks. This review provides an overview of BDSs and delves into the multifaceted translational challenges and present emerging solutions, underscored by real-world case studies. Emphasizing the potential of BDSs to redefine healthcare, we advocate for sustained interdisciplinary collaboration and research. As our understanding of biological systems deepens, the future of BDSs in clinical translation appears promising, with a focus on personalized medicine and refined patient-specific delivery systems.

17.
Talanta ; 269: 125447, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38008018

RESUMO

Chlorophyll-a (Chl-a) fluorescence detection is an important technique for monitoring water quality. In this work, we proposed an approach that employs the mass-produced low-cost optical pick-up unit (OPU) extracted from the high-definition digital versatile disc (HD-DVD) drive as the key optical component for our chlorophyll-a fluorometer. The built-in blue-violet 405 nm laser diode of the OPU acts as the excitation light to perform laser-induced fluorescence (LIF). The laser driver and a series of intrinsic lenses within the OPU, such as an objective lens with a numerical aperture (NA) of 0.65 and a collimating lens, help reduce the size, cost, and system complexity of the fluorometer. By integrating off-the-shelf electronic components, miniaturized optical setups, and 3D-printed assemblies, we have developed a low-cost, easy-to-make, standalone, and portable fluorometer. Finally, we validated the performance of the device for chlorophyll-a fluorescence detection under laboratory and on-site conditions, which demonstrated its great potential in water monitoring applications. The limit of detection (LOD) for chlorophyll-a is 0.35 µg/L, the size of the device is 151 × 100 × 80 mm3, and the total cost of the proposed fluorometer is as low as 137.5 USD. © 2023 Elsevier Science. All rights reserved.

18.
Mikrochim Acta ; 190(12): 491, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38030848

RESUMO

Bronchopulmonary dysplasia (BPD) is a chronic lung disease in premature infants with increased levels of reactive oxygen species (ROS) and ferroptosis. Herein, we designed a peptide-based nanoparticle to deliver therapeutic molecules to pulmonary, thereby ameliorating BPD. The BPD-induced damages of lung tissues were detected by H&E and immunohistochemistry staining. Inflammatory cytokines, Fe2+, and ROS levels were quantified by the indicated kits, respectively. The targeting relationship was verified by luciferase reporter assay and pull-down assay. Subsequently, self-assembled miR-134-5p inhibitor nanoparticles with pulmonary epithelial cell-targeting were synthesized. The characteristics were detected by transmission electron microscopy, luminescence imaging, and dynamic light scattering. A significant ferroptosis was observed in the BPD mice. The protein level of GPX4 was decreased significantly compared to the control group. Constantly, miR-134-5p showed positive regulation on ferroptosis by targeting GPX4. The designed nanoparticles were mainly accumulated in the lung region. Besides, it ameliorated experimental bronchopulmonary dysplasia via suppressing ferroptosis, in vivo and in vitro. Our findings provided a miR-134-5p/GPX4 axis in regulating ferroptosis of BPD and prompted the potential of applying the peptide-based nanoparticle to BPD treatment.


Assuntos
Displasia Broncopulmonar , Ferroptose , MicroRNAs , Nanopartículas , Humanos , Lactente , Recém-Nascido , Animais , Camundongos , Displasia Broncopulmonar/tratamento farmacológico , Espécies Reativas de Oxigênio , Citocinas
19.
PLoS Pathog ; 19(11): e1011754, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38032898

RESUMO

Dermal fibroblasts (dFBs) defend against deep bacterial skin infections by differentiating into preadipocytes (pAds) that produce the antimicrobial peptide cathelicidin; this differentiation is known as the dermal reactive adipogenesis response. However, the role of dFBs in fungal infection remains unknown. Here, we found that cathelicidin-producing pAds were present in high numbers in skin lesions from patients with cutaneous Candida granulomas. Second, we showed that dermal Candida albicans (C. albicans) infection in mice robustly triggered the dermal reactive adipogenesis response and induced cathelicidin expression, and inhibition of adipogenesis with pharmacological inhibitors of peroxisome proliferator-activated receptor γ (PPARγ) impaired skin resistance to C. albicans. In vitro, C. albicans products induced cathelicidin expression in pAds, and differentiating pAds markedly suppressed the growth of C. albicans by producing cathelicidin. Finally, we showed that C. albicans induced an antimicrobial response in pAds through the FGFR-MEK-ERK pathway. Together, our data reveal a previously unknown role of dFBs in the defense against skin infection caused by C. albicans.

20.
Nat Commun ; 14(1): 7900, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036550

RESUMO

Left ventricular regional wall thickness (LVRWT) is an independent predictor of morbidity and mortality in cardiovascular diseases (CVDs). To identify specific genetic influences on individual LVRWT, we established a novel deep learning algorithm to calculate 12 LVRWTs accurately in 42,194 individuals from the UK Biobank with cardiac magnetic resonance (CMR) imaging. Genome-wide association studies of CMR-derived 12 LVRWTs identified 72 significant genetic loci associated with at least one LVRWT phenotype (P < 5 × 10-8), which were revealed to actively participate in heart development and contraction pathways. Significant causal relationships were observed between the LVRWT traits and hypertrophic cardiomyopathy (HCM) using genetic correlation and Mendelian randomization analyses (P < 0.01). The polygenic risk score of inferoseptal LVRWT at end systole exhibited a notable association with incident HCM, facilitating the identification of high-risk individuals. The findings yield insights into the genetic determinants of LVRWT phenotypes and shed light on the biological basis for HCM etiology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...