Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Opt Express ; 29(23): 37234-37244, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808800

RESUMO

Mid-infrared absorption spectroscopy is an effective method for detecting analyte fingerprints without labeling, but the inherent loss of metals in current methods is a main issue. Here, a sensing scheme was proposed that uses an all-dielectric grating metasurface and angular scanning of polarized light, and then it was verified by numerical simulation. The proposed fingerprint detection scheme could effectively couple a guided-mode resonance spectrum peak with the characteristic peak of the analyte's phonon-polariton in the mid-infrared region, significantly enhancing the interaction between light and the analyte. The novel scheme would realize broadband enhancement to detect a variety of substances, and facilitate mid-infrared sensing and analysis of trace substances.

2.
J Alzheimers Dis ; 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34842190

RESUMO

BACKGROUND: Despite the improved access to health services in China, inadequate diagnosis and management of dementia are common issues, especially in rural regions. OBJECTIVE: The Hubei Memory & Aging Cohort Study was designed as a prospective study in Central China to determine the prevalence, incidence, and risk factors for dementia and mild cognitive impairment (MCI) among urban and rural older adults. METHODS: From 2018-2020, participants aged ≥65 years were screened, and data regarding their life behaviors, families, socio-economic status, physical and mental health, social and psychological factors, and cognition were collected. Diagnoses of MCI and dementia were made via consensus diagnosis using the Diagnostic and Statistical Manual of Mental Disorders fourth edition criteria. RESULTS: Of 8,221 individuals who completed their baseline clinical evaluation, 4,449 (54.1%) were women and 3,164 (38.4%) were from remote rural areas (average age: 71.96 years; mean education period: 7.58 years). At baseline, 25.98%(95%confidence interval [CI]: 24.99-26.96) and 7.24%(95%CI: 6.68-7.80) of the participants were diagnosed with MCI and dementia, respectively. Prevalence showed a strong relationship with age. The substantial disparities between rural and urban regions in MCI and dementia prevalence and multiple dementia-related risk factors were revealed. Especially for dementia, the prevalence rate in rural areas was 2.65 times higher than that in urban regions. CONCLUSION: Our results suggested that public health interventions are urgently needed to achieve equitable diagnosis and management for people living with dementia in the communities across urban and rural areas.

3.
J Neurol ; 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34839456

RESUMO

BACKGROUND: The prevalence of dementia in China, particularly in rural areas, is consistently increasing; however, research on population-attributable fractions (PAFs) of risk factors for dementia is scarce. METHODS: We conducted a cross-sectional survey, namely, the China Multicentre Dementia Survey (CMDS) in selected rural and urban areas from 2018 to 2020. We performed face-to-face interviews and neuropsychological and clinical assessments to reach a consensus on dementia diagnosis. Prevalence and weighted PAFs of eight modifiable risk factors (six classical: less childhood education, hearing impairment, depression, physical inactivity, diabetes, and social isolation, and two novels: olfactory decline and being unmarried) for all-cause dementia were estimated. RESULTS: Overall, CMDS included 17,589 respondents aged ≥ 65 years, 55.6% of whom were rural residents. The age- and sex-adjusted prevalence for all-cause dementia was 9.11% (95% CI 8.96-9.26), 5.19% (5.07-5.31), and 11.98% (11.8-12.15) in the whole, urban, and rural areas of China, respectively. Further, the overall weighted PAFs of the eight potentially modifiable risk factors were 53.72% (95% CI 52.73-54.71), 50.64% (49.4-51.89), and 56.54% (55.62-57.46) in the whole, urban, and rural areas of China, respectively. The eight risk factors' prevalence differed between rural and urban areas. Lower childhood education (PAF: 13.92%) and physical inactivity (16.99%) were primary risk factors in rural and urban areas, respectively. CONCLUSIONS: The substantial urban-rural disparities in the prevalence of dementia and its risk factors exist, suggesting the requirement of resident-specific dementia-prevention strategies.

4.
Antioxidants (Basel) ; 10(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34573026

RESUMO

Bone-forming cells build mineralized microstructure and couple with bone-resorbing cells, harmonizing bone mineral acquisition, and remodeling to maintain bone mass homeostasis. Mitochondrial glycolysis and oxidative phosphorylation pathways together with ROS generation meet the energy requirement for bone-forming cell growth and differentiation, respectively. Moderate mechanical stimulations, such as weight loading, physical activity, ultrasound, vibration, and electromagnetic field stimulation, etc., are advantageous to bone-forming cell activity, promoting bone anabolism to compromise osteoporosis development. A plethora of molecules, including ion channels, integrins, focal adhesion kinases, and myokines, are mechanosensitive and transduce mechanical stimuli into intercellular signaling, regulating growth, mineralized extracellular matrix biosynthesis, and resorption. Mechanical stimulation changes mitochondrial respiration, biogenesis, dynamics, calcium influx, and redox, whereas mechanical disuse induces mitochondrial dysfunction and oxidative stress, which aggravates bone-forming cell apoptosis, senescence, and dysfunction. The control of the mitochondrial biogenesis activator PGC-1α by NAD+-dependent deacetylase sirtuins or myokine FNDC/irisin or repression of oxidative stress by mitochondrial antioxidant Nrf2 modulates the biophysical stimulation for the promotion of bone integrity. This review sheds light onto the roles of mechanosensitive signaling, mitochondrial dynamics, and antioxidants in mediating the anabolic effects of biophysical stimulation to bone tissue and highlights the remedial potential of mitochondrial biogenesis regulators for osteoporosis.

5.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502056

RESUMO

Skeletal tissue involves systemic adipose tissue metabolism and energy expenditure. MicroRNA signaling controls high-fat diet (HFD)-induced bone and fat homeostasis dysregulation remains uncertain. This study revealed that transgenic overexpression of miR-29a under control of osteocalcin promoter in osteoblasts (miR-29aTg) attenuated HFD-mediated body overweight, hyperglycemia, and hypercholesterolemia. HFD-fed miR-29aTg mice showed less bone mass loss, fatty marrow, and visceral fat mass together with increased subscapular brown fat mass than HFD-fed wild-type mice. HFD-induced O2 underconsumption, respiratory quotient repression, and heat underproduction were attenuated in miR-29aTg mice. In vitro, miR-29a overexpression repressed transcriptomic landscapes of the adipocytokine signaling pathway, fatty acid metabolism, and lipid transport, etc., of bone marrow mesenchymal progenitor cells. Forced miR-29a expression promoted osteogenic differentiation but inhibited adipocyte formation. miR-29a signaling promoted brown/beige adipocyte markers Ucp-1, Pgc-1α, P2rx5, and Pat2 expression and inhibited white adipocyte markers Tcf21 and Hoxc9 expression. The microRNA also reduced peroxisome formation and leptin expression during adipocyte formation and downregulated HFD-induced leptin expression in bone tissue. Taken together, miR-29a controlled leptin signaling and brown/beige adipocyte formation of osteogenic progenitor cells to preserve bone anabolism, which reversed HFD-induced energy underutilization and visceral fat overproduction. This study sheds light on a new molecular mechanism by which bone integrity counteracts HFD-induced whole-body fat overproduction.


Assuntos
Gordura Intra-Abdominal/metabolismo , Leptina/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoporose/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular , Dieta Hiperlipídica/efeitos adversos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Leptina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Osteoblastos/citologia , Osteoporose/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Peroxissomos/metabolismo , Receptores Purinérgicos P2X5/genética , Receptores Purinérgicos P2X5/metabolismo , Simportadores/genética , Simportadores/metabolismo , Termogênese , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
6.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502380

RESUMO

Biophysical stimulation alters bone-forming cell activity, bone formation and remodeling. The effect of piezoelectric microvibration stimulation (PMVS) intervention on osteoporosis development remains uncertain. We investigated whether 60 Hz, 120 Hz, and 180 Hz PMVS (0.05 g, 20 min/stimulation, 3 stimulations/week for 4 consecutive weeks) intervention affected bone integrity in ovariectomized (OVX) mice or osteoblastic activity. PMVS (120 Hz)-treated OVX mice developed fewer osteoporosis conditions, including bone mineral density loss and trabecular microstructure deterioration together with decreased serum resorption marker CTX-1 levels, as compared to control OVX animals. The biomechanical strength of skeletal tissue was improved upon 120 Hz PMVS intervention. This intervention compromised OVX-induced sparse trabecular bone morphology, osteoblast loss, osteoclast overburden, and osteoclast-promoting cytokine RANKL immunostaining and reversed osteoclast inhibitor OPG immunoreactivity. Osteoblasts in OVX mice upon PMVS intervention showed strong Wnt3a immunoreaction and weak Wnt inhibitor Dkk1 immunostaining. In vitro, PMVS reversed OVX-induced loss in von Kossa-stained mineralized nodule formation, Runx2, and osteocalcin expression in primary bone-marrow stromal cells. PMVS also promoted mechanoreceptor Piezo1 expression together with increased microRNA-29a and Wnt3a expression, whereas Dkk1 rather than SOST expression was repressed in MC3T3-E1 osteoblasts. Taken together, PMVS intervention promoted Piezo1, miR-29a, and Wnt signaling to upregulate osteogenic activity and repressed osteoclastic bone resorption, delaying estrogen deficiency-induced loss in bone mass and microstructure. This study highlights a new biophysical remedy for osteoporosis.


Assuntos
Osteoblastos/metabolismo , Osteoporose/terapia , Terapia por Ultrassom/métodos , Animais , Fenômenos Biomecânicos , Densidade Óssea/efeitos dos fármacos , Reabsorção Óssea/metabolismo , Osso e Ossos/metabolismo , Calcificação Fisiológica , Diferenciação Celular/efeitos dos fármacos , Estrogênios/metabolismo , Feminino , Canais Iônicos/metabolismo , Canais Iônicos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/fisiologia , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteoporose/metabolismo , Ovariectomia , Transdução de Sinais , Ondas Ultrassônicas , Proteína Wnt3A/metabolismo
7.
Antioxidants (Basel) ; 10(8)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34439496

RESUMO

Senescent osteoblast overburden accelerates bone mass loss. Little is understood about microRNA control of oxidative stress and osteoblast senescence in osteoporosis. We revealed an association between microRNA-29a (miR-29a) loss, oxidative stress marker 8-hydroxydeoxyguanosine (8-OHdG), DNA hypermethylation marker 5-methylcystosine (5mC), and osteoblast senescence in human osteoporosis. miR-29a knockout mice showed low bone mass, sparse trabecular microstructure, and osteoblast senescence. miR-29a deletion exacerbated bone loss in old mice. Old miR-29a transgenic mice showed fewer osteoporosis signs, less 5mC, and less 8-OHdG formation than age-matched wild-type mice. miR-29a overexpression reversed age-induced senescence and osteogenesis loss in bone-marrow stromal cells. miR-29a promoted transcriptomic landscapes of redox reaction and forkhead box O (FoxO) pathways, preserving oxidation resistance protein-1 (Oxr1) and FoxO3 in old mice. In vitro, miR-29a interrupted DNA methyltransferase 3b (Dnmt3b)-mediated FoxO3 promoter methylation and senescence-associated ß-galactosidase activity in aged osteoblasts. Dnmt3b inhibitor 5'-azacytosine, antioxidant N-acetylcysteine, or Oxr1 recombinant protein attenuated loss in miR-29a and FoxO3 to mitigate oxidative stress, senescence, and mineralization matrix underproduction. Taken together, miR-29a promotes Oxr1, compromising oxidative stress and FoxO3 loss to delay osteoblast aging and bone loss. This study sheds light on a new antioxidation mechanism by which miR-29a protects against osteoblast aging and highlights the remedial effects of miR-29a on osteoporosis.

8.
Cancer Med ; 10(12): 4075-4086, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33949155

RESUMO

Human papillomavirus (HPV) is recognized as a major cause of oropharyngeal cancer (OPC) in Western countries. Less is known regarding its contribution to the OPC occurring in Asia. The current study aimed to investigate the association between antibody responses to HPV16 E7 and head and neck cancer (HNC) risk in a hospital-based case-control study conducted in Taiwan with 693 HNC cases and 1,035 controls. A positive association was observed between seropositivity to HPV16 E7 and OPC risk, whereas no significant association was found in the non-OPC cases. The increased OPC risk associated with seropositivity to HPV16 E7 was more significant among nonbetel quid or noncigarette users. Seropositivity to HPV16 E7 showed moderate agreement with P16 expression in OPC. OPC patients that were seropositive to HPV16 E7 or p16 positive were more highly educated and less likely to use alcohol, betel quids, and cigarettes compared to HPV16 E7 seronegative or p16 negative OPC patients. Furthermore, patients with p16 positive OPC were more likely to be women compared to patients with p16 negative OPC, likely owing to the low prevalence of alcohol, betel quid, and cigarette users among women. Overall, this study suggested that similar to Western countries, HPV may also be an important risk factor of OPC in Taiwan. With the declining consumption of betel quids and cigarettes in Taiwan, a higher percentage of OPC cases in Taiwan will be attributed to HPV in the future. Public health measures, including HPV vaccination, need to be implemented to prevent the occurrence of HPV-positive OPC.

9.
ACS Omega ; 5(38): 24487-24494, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33015465

RESUMO

Although the regulation of the enzyme-like activities of nanozymes has stimulated great interest recently, the exploration of modulators makes it possible to enhance the catalytic performance of nanozymes, though doing so remains a big challenge. Herein, we systemically studied the effects of fluorescence quenchers on the peroxidase-like activity of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) based on photoinduced electron transfer (PET). We found that PET quenchers can not only quench the fluorescence of BSA-AuNCs but also regulate their intrinsic peroxidase-like activity. Importantly, both BSA and human serum albumin (HSA) could enhance the peroxidase-like activity of Cu2+, which provided a new sensing platform for distinguishing BSA and HSA from other thiol-containing biomolecules. The PET quenchers could also manipulate the peroxidase-like activity of polyvinylpyrrolidone-stabilized gold nanoparticles (PVP-AuNPs), which exhibited some opposite results between PVP-AuNPs and BSA-AuNCs. The opposite effects on BSA-AuNCs and PVP-AuNPs were speculated to highly depend on their surface properties. Our findings offer an efficient strategy for tuning the peroxidase-like activities of gold-based nanozymes.

10.
Antioxidants (Basel) ; 9(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882839

RESUMO

Compromised autophagy and mitochondrial dysfunction downregulate chondrocytic activity, accelerating the development of osteoarthritis (OA). Irisin, a cleaved form of fibronectin type III domain containing 5 (FNDC5), regulates bone turnover and muscle homeostasis. Little is known about the effect of Irisin on chondrocytes and the development of osteoarthritis. This study revealed that human osteoarthritic articular chondrocytes express decreased level of FNDC5 and autophagosome marker LC3-II but upregulated levels of oxidative DNA damage marker 8-hydroxydeoxyguanosine (8-OHdG) and apoptosis. Intra-articular administration of Irisin further alleviated symptoms of medial meniscus destabilization, like cartilage erosion and synovitis, while improved the gait profiles of the injured legs. Irisin treatment upregulated autophagy, 8-OHdG and apoptosis in chondrocytes of the injured cartilage. In vitro, Irisin improved IL-1ß-mediated growth inhibition, loss of specific cartilage markers and glycosaminoglycan production by chondrocytes. Irisin also reversed Sirt3 and UCP-1 pathways, thereby improving mitochondrial membrane potential, ATP production, and catalase to attenuated IL-1ß-mediated reactive oxygen radical production, mitochondrial fusion, mitophagy, and autophagosome formation. Taken together, FNDC5 loss in chondrocytes is correlated with human knee OA. Irisin repressed inflammation-mediated oxidative stress and extracellular matrix underproduction through retaining mitochondrial biogenesis, dynamics and autophagic program. Our analyses shed new light on the chondroprotective actions of this myokine, and highlight the remedial effects of Irisin on OA development.

11.
Opt Express ; 28(16): 23748-23760, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32752367

RESUMO

In this study, we designed a novel ultra-wideband (UWB) absorber and numerically analyzed it to demonstrate that its light absorptivity was greater than 90% in the wavelength range of visible light and near-infrared (405-1505 nm). The structure of proposed novel UWB absorber consisted of four layers of films, including silica, titanium, magnesium fluoride, and aluminium, and the upper silica and titanium layers had rectangular cubes in them. For that, the excitations of propagating surface plasmon resonance (PSPR), local surface plasmon resonance (LSPR), and the resonance of Fabry-Perot (FP) cavity were generated at the same time and combined to reach the effect of perfect absorption and ultra-wideband. The proposed absorber had an average absorptivity of 95.14% in the wavelength range of 405 ∼ 1505 nm when the light was under normal incidence. In addition, the UWB absorber was large incident angle insensitive and polarization-independent. The absorber proposed in the paper had great prospects in the fields of thermal electronic equipment, solar power generation, and perfect cloaking.

12.
In Vivo ; 34(4): 1789-1796, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32606148

RESUMO

BACKGROUND/AIM: Radiation (RT) induced ERK/NF-κB in hepatocellular carcinoma (HCC) has been reported in our previous works; it weakens the toxicity of RT or triggers a radioresistance effect. Thus, combining RT with a suitable NF-κB inhibitor may sensitize HCC to RT. Magnolol, a bioactive compound, was known to have anti-inflammatory and anti-tumor functions. Here, we aimed to investigate whether magnolol may enhance anti-HCC efficacy of RT in vivo. MATERIALS AND METHODS: We established a Hep3B bearing mouse to evaluate the efficacy of the combination treatment of magnolol and RT. RESULTS: Most significantly, tumor volume and tumor weight inhibition was found in the combination group. Tumor immunohistochemistry staining also illustrated the suppression of RT-induced ERK/NF-κB-related proteins expression by magnolol. In addition, intrinsic apoptosis-related proteins, such as caspase-3 and -9, were markedly increased in the combination group. CONCLUSION: Magnolol may effectively enhance anti-HCC ability of RT by downregulating the expression of ERK/NF-κB-related proteins and increasing the expression of apoptosis-related proteins.


Assuntos
Carcinoma Hepatocelular , Lignanas , Neoplasias Hepáticas , Radiossensibilizantes , Animais , Apoptose , Compostos de Bifenilo/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Lignanas/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , NF-kappa B/genética , Radiossensibilizantes/farmacologia
13.
Int J Mol Sci ; 21(14)2020 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-32664681

RESUMO

Bone turnover is sophisticatedly balanced by a dynamic coupling of bone formation and resorption at various rates. The orchestration of this continuous remodeling of the skeleton further affects other skeletal tissues through organ crosstalk. Chronic excessive bone resorption compromises bone mass and its porous microstructure as well as proper biomechanics. This accelerates the development of osteoporotic disorders, a leading cause of skeletal degeneration-associated disability and premature death. Bone-forming cells play important roles in maintaining bone deposit and osteoclastic resorption. A poor organelle machinery, such as mitochondrial dysfunction, endoplasmic reticulum stress, and defective autophagy, etc., dysregulates growth factor secretion, mineralization matrix production, or osteoclast-regulatory capacity in osteoblastic cells. A plethora of epigenetic pathways regulate bone formation, skeletal integrity, and the development of osteoporosis. MicroRNAs inhibit protein translation by binding the 3'-untranslated region of mRNAs or promote translation through post-transcriptional pathways. DNA methylation and post-translational modification of histones alter the chromatin structure, hindering histone enrichment in promoter regions. MicroRNA-processing enzymes and DNA as well as histone modification enzymes catalyze these modifying reactions. Gain and loss of these epigenetic modifiers in bone-forming cells affect their epigenetic landscapes, influencing bone homeostasis, microarchitectural integrity, and osteoporotic changes. This article conveys productive insights into biological roles of DNA methylation, microRNA, and histone modification and highlights their interactions during skeletal development and bone loss under physiological and pathological conditions.


Assuntos
Remodelação Óssea/genética , Epigênese Genética , Osteoporose/genética , Adipogenia , Animais , Autofagia , Reabsorção Óssea/genética , Metilação de DNA , Modelos Animais de Doenças , Endorribonucleases/fisiologia , Código das Histonas , Histona Desacetilases/fisiologia , Histona Metiltransferases/fisiologia , Homeostase , Humanos , Camundongos , MicroRNAs/sangue , MicroRNAs/genética , Mitofagia , Organelas/fisiologia , Osteoblastos/fisiologia , Osteoblastos/ultraestrutura , Osteoporose/metabolismo , Polimorfismo de Nucleotídeo Único
14.
Cells ; 9(6)2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575577

RESUMO

Glucocorticoid provokes bone mass loss and fatty marrow, accelerating osteoporosis development. Bromodomain protein BRD4, an acetyl-histone-binding chromatin reader, regulates stem cell and tissue homeostasis. We uncovered that glucocorticoid inhibited acetyl Lys-9 at the histone 3 (H3K9ac)-binding Runx2 promoter and decreased osteogenic differentiation, whereas bromodomain protein 4 (BRD4) and adipocyte formation were upregulated in bone-marrow mesenchymal progenitor cells. BRD4 knockdown improved H3K9ac occupation at the Runx2 promoter and osteogenesis, but attenuated glucocorticoid-mediated adipocyte formation together with the unaffected H3K9ac-binding PPARγ2 promoter. BRD4 regulated epigenome related to fatty acid metabolism and the forkhead box P1 (Foxp1) pathway, which occupied the PPARγ2 promoter to modulate glucocorticoid-induced adipocytic activity. In vivo, BRD4 inhibitor JQ-1 treatment mitigated methylprednisolone-induced suppression of bone mass, trabecular microstructure, mineral acquisition, and osteogenic differentiation. Foxp1 signaling, marrow fat, and adipocyte formation in glucocorticoid-treated skeleton were reversed upon JQ-1 treatment. Taken together, glucocorticoid-induced H3K9 hypoacetylation augmented BRD4 action to Foxp1, which steered mesenchymal progenitor cells toward adipocytes at the cost of osteogenic differentiation in osteoporotic skeletons. BRD4 inhibition slowed bone mass loss and marrow adiposity. Collective investigations convey a new epigenetic insight into acetyl histone reader BRD4 control of osteogenesis and adipogenesis in skeleton, and highlight the remedial effects of the BRD4 inhibitor on glucocorticoid-induced osteoporosis.


Assuntos
Adipogenia/fisiologia , Medula Óssea/metabolismo , Proteínas de Ciclo Celular/metabolismo , Glucocorticoides/metabolismo , Fatores de Transcrição/metabolismo , Diferenciação Celular/efeitos dos fármacos , Glucocorticoides/farmacologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/efeitos dos fármacos , Osteogênese/fisiologia
15.
Cancer Sci ; 111(8): 2974-2986, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32539207

RESUMO

Many studies have reported a positive association between lower socioeconomic status (SES) and higher head and neck cancer (HNC) risk. Fewer studies have examined the impact of SES on the association between alcohol or cigarette use and HNC risk. The current case-control study (1104 HNC cases and 1363 controls) investigated the influence of education, a SES indicator, on the association between HNC and the use of alcohol, cigarettes, or betel quids in Taiwan, a country with universal health care. Our results showed a larger increase in HNC risk associated with alcohol among those with lower educational level (odds ratio [OR] = 2.07; 95% confidence interval [CI], 1.53-2.80) than those with higher educational level (OR = 1.38; 95% CI, 1.04-1.85) (heterogeneity-P = .03). Educational level had an influence on the association between alcohol use and HNC risk among those with genetic susceptibility (ALDH2-deficient) to the carcinogenic effect of alcohol. The association between cigarette or betel quid use and HNC risk was similar between the high and low educational groups. National policies and social interventions have led to the decline in the prevalence of cigarette and betel quid users in Taiwan. In contrast, due to the lack of adequate alcohol control policies, alcohol consumption in Taiwan has continued to rise. A higher impact of alcohol on HNC risk among lower SES individuals even with universal health care could be the result of insufficient alcohol control policies in Taiwan.


Assuntos
Neoplasias de Cabeça e Pescoço/epidemiologia , Disparidades nos Níveis de Saúde , Estilo de Vida , Carcinoma de Células Escamosas de Cabeça e Pescoço/epidemiologia , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/epidemiologia , Aldeído-Desidrogenase Mitocondrial/deficiência , Aldeído-Desidrogenase Mitocondrial/genética , Compostos de Cálcio/administração & dosagem , Compostos de Cálcio/efeitos adversos , Estudos de Casos e Controles , Escolaridade , Feminino , Predisposição Genética para Doença , Neoplasias de Cabeça e Pescoço/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Óxidos/administração & dosagem , Óxidos/efeitos adversos , Piper/efeitos adversos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/efeitos adversos , Polimorfismo de Nucleotídeo Único , Prevalência , Fatores de Risco , Fumar/efeitos adversos , Fumar/epidemiologia , Classe Social , Carcinoma de Células Escamosas de Cabeça e Pescoço/etiologia , Taiwan/epidemiologia , Assistência de Saúde Universal
16.
Artigo em Inglês | MEDLINE | ID: mdl-32521728

RESUMO

This study investigates the impact of green brand affect on green purchase intentions and explores the mediation effects of green brand attitude and green brand associations by means of the structural equation model (SEM). There is no previous literature discussing the relationship between brand affect and purchase intentions from the perspective of green marketing. Therefore, this article establishes a green purchase intention framework to fill in the research gap. The research object of this study focuses on Taiwanese consumers who have the purchase experience of information and electronics products in Taiwan. A total of 1000 consumers were randomly selected and 365 valid responses were received. In addition, this research conducted an empirical study using a questionnaire survey and structural equation model (SEM) to verify the research framework. The results show that green brand affect has no direct influence on green purchase intentions. Besides, this study indicates that green brand associations and green brand attitude fully mediate the relationship between green brand affect and green purchase intentions. It implies that green brand affect indirectly influences green purchase intentions via green brand attitude and green brand associations. While companies tend to raise their customers' green purchase intentions, they need to increase their green brand affect, green brand associations, and green brand attitude.


Assuntos
Comportamento do Consumidor , Intenção , Atitude , Conservação dos Recursos Naturais , Inquéritos e Questionários , Taiwan
17.
Chemistry ; 26(50): 11511-11521, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32333427

RESUMO

Anthracene-pentiptycene hybrid systems 1-Cn, where n refers to the number of carbon atoms in the linear alkyl chain, crystallize in three different polymorphs, denoted Y (yellow), G (green), and B (blue) forms in terms of the fluorescence color. While all Y-form crystals show the same yellow-to-blue fluorescence color response to the photomechanical stress generated by the anthracene [4+4] photodimerization reaction, the four G forms exhibit distinct photomechanofluorochromism (PMFC): from green to blue for G-1-C4, to orange for G-1-C7, to red for G-1-C8, and to red then blue for G-1-C9, and the B forms show no photochromic activity. The intriguing RGB three-color PMFC and abnormal topochemical reactivity of G-1-C9 are attributed to inherent softness of the crystal lattice.

18.
J Neurosci ; 40(6): 1355-1365, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31882402

RESUMO

Fragile X syndrome (FXS) is the most common inherited form of intellectual disability, resulted from the silencing of the Fmr1 gene and the subsequent loss of fragile X mental retardation protein (FMRP). Spine dysgenesis and cognitive impairment have been extensively characterized in FXS; however, the underlying mechanism remains poorly understood. As an important regulator of spine maturation, intercellular adhesion molecule 5 (ICAM5) mRNA may be one of the targets of FMRP and involved in cognitive impairment in FXS. Here we show that in Fmr1 KO male mice, ICAM5 was excessively expressed during the late developmental stage, and its expression was negatively correlated with the expression of FMRP and positively related with the morphological abnormalities of dendritic spines. While in vitro reduction of ICAM5 normalized dendritic spine abnormalities in Fmr1 KO neurons, and in vivo knockdown of ICAM5 in the dentate gyrus rescued the impaired spatial and fear memory and anxiety-like behaviors in Fmr1 KO mice, through both granule cell and mossy cell with a relative rate of 1.32 ± 0.15. Furthermore, biochemical analyses showed direct binding of FMRP with ICAM5 mRNA, to the coding sequence of ICAM5 mRNA. Together, our study suggests that ICAM5 is one of the targets of FMRP and is implicated in the molecular pathogenesis of FXS. ICAM5 could be a therapeutic target for treating cognitive impairment in FXS.SIGNIFICANCE STATEMENT Fragile X syndrome (FXS) is characterized by dendritic spine dysgenesis and cognitive dysfunctions, while one of the FMRP latent targets, ICAM5, is well established for contributing both spine maturation and learning performance. In this study, we examined the potential link between ICAM5 mRNA and FMRP in FXS, and further investigated the molecular details and pathological consequences of ICAM5 overexpression. Our results indicate a critical role of ICAM5 in spine maturation and cognitive impairment in FXS and suggest that ICAM5 is a potential molecular target for the development of medication against FXS.


Assuntos
Disfunção Cognitiva/metabolismo , Espinhas Dendríticas/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Regulação da Expressão Gênica/fisiologia , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Disfunção Cognitiva/genética , Espinhas Dendríticas/patologia , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Síndrome do Cromossomo X Frágil/complicações , Síndrome do Cromossomo X Frágil/genética , Masculino , Camundongos , Camundongos Knockout , Neurogênese/genética
19.
J Biomed Nanotechnol ; 16(12): 1740-1754, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33485401

RESUMO

During the process of wound healing, avoiding the formation of aligned collagen fibrils and subsequent scarring has become the focus of numerous research efforts. However, the goal of regeneration of native or scar-free skin remains a challenge. The complex and equivocal connection between inflammation and regeneration within the process of healing contributes to unsatisfactory treatment outcomes. Inspired by the scarless repair observed in fetal wound healing, we create a two-stage treatment combining the hydrocolloid dressing to attenuate the immune response in the initial three days, and the biomimetic cell-laden hydrogel to improve skin regeneration, which meet the specific needs of each stage in the healing process. To further accelerate the skin regeneration, the patterned cell-laden hydrogels were fabricated by photo-mask based photolithography technique. The efficacy and possible mechanisms of skin regeneration using this patterned cell-laden hydrogel therapy was investigated. Results show that these two-stage patterned cell-laden treatments were able to promote vascular network formation, accelerate wound closure, decrease scar formation, increase tissue regeneration and restore structure and mechanical properties of the skin in a full-thickness murine wound model. These data suggest that our patterned cell-based two-stage treatments can be used as a promising therapeutic option for wound healing by accelerating skin tissue regeneration.


Assuntos
Pele , Cicatrização , Animais , Bandagens , Cicatriz , Hidrogéis , Camundongos , Pele/patologia
20.
Nanomaterials (Basel) ; 10(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861856

RESUMO

We theoretically proposed and numerically analyzed a polarization-independent, wide-angle, and ultra-broadband absorber based on a multi-layer metasurface. The numerical simulation results showed that the average absorption rates were more than 97.2% covering the broad wavelength of 400~6000 nm (from visible light to mid-infrared light) and an absorption peak was 99.99%, whatever the polarization angle was changed from 0° to 90°. Also, as the incidence angle was swept from 0° to 55°, the absorption performance had no apparent change over the wavelength ranges of 400 to 6000 nm. We proved that the proposed metasurface structure was obviously advantageous to achieve impedance matching between the absorber and the free space as compared with conventionally continuous planar-film structures. The broadband and high absorption resulted from the strong localized surface plasmon resonance and superposition of resonant frequencies. As expectable the proposed absorber structure will hold great potential in plasmonic light harvesting, photodetector applications, thermal emitters and infrared cloaking.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...