Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Epidemiol ; 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31712801

RESUMO

Asthma and obesity are two of the most prevalent chronic health conditions in children. Although there has been compelling evidence of co-occurrence of asthma and obesity, it is uncertain whether asthma contributes to the development of obesity or obesity contributes to the onset of asthma or both. In this study, we used a joint transition modeling approach with cross-lagged structure to understand how asthma and obesity influence each other dynamically over time. Subjects for this study included 5193 kindergarten and first-grade students enrolled from 13 communities in 2002-03 in the Southern California Children's Health Study (CHS) with up to 10 years of follow-up. We found that non-obese children with diagnosed asthma at a study visit were at 37% increased odds of becoming obese by the next annual visit compared with children without asthma (OR=1.38; 95% CI=1.12-1.71). However, the presence of obesity at the current visit was not statistically significantly associated with asthma onset in the next visit (OR=1.25; 95% CI=0.94-1.62). In conclusion, childhood asthma drives an increase in the onset of obesity among school children, while the onset of obesity does not necessarily imply the future onset of asthma at least in the short term.

2.
Environ Int ; 133(Pt A): 105180, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31622905

RESUMO

OBJECTIVE: Growing evidence indicates exposure to air pollution contributes to obesity and cardiometabolic disease risk in children and adults, however studies are lacking in young adulthood, an important transitional period in the life course. The aim of this study was to examine the associations of short- and long-term regional ambient and near-roadway air pollution (NRAP) exposures on adiposity and cardiometabolic health in young adults aged 17-22 years. METHODS: From 2014 to 2018, a subset of participants (n = 158) were recruited from the Children's Health Study to participate in the Meta-AIR (Metabolic and Asthma Incidence Research) study to assess obesity (body composition and abdominal adiposity) and cardiometabolic health (fasting glucose, fasting insulin and lipid profiles) measures. Prior 1-month and 1-year average air pollution exposures were calculated from residential addresses. This included nitrogen dioxide (NO2), ozone (O3), particulate matter with aerodynamic diameter < 10 µm (PM10), particulate matter with aerodynamic diameter < 2.5 µm (PM2.5) and NRAP (freeway, non-freeway, and total nitrogen oxides (NOx)) exposures. Linear regression models examined associations of prior 1-month (short-term) and 1-year (long-term) air pollution exposures on obesity and cardiometabolic factors adjusting for covariates and past childhood air pollution exposures. RESULTS: In the Meta-AIR study, we conducted a comprehensive analysis with short- and long-term regional ambient and NRAP exposures (in both single- and multi-pollutant models) and obesity- and cardiometabolic-related outcomes and found associations with a few outcomes. A 1 standard deviation (SD) change in long-term NO2 exposure was associated with a 11.3 mg/dL higher level of total cholesterol (p = 0.04) and 9.4 mg/dL higher level of low-density lipoproteins (LDL)-cholesterol (p = 0.04). Amongst obese participants, associations between long-term NO2 and total cholesterol and LDL-cholesterol were 4.5 and 9 times larger than the associations in non-obese participants (pinteraction = 0.008 and 0.03, respectively). Additionally, we observed a statistically significant association with increased short-term O3 exposure and higher triglyceride and very-low-density lipoprotein (VLDL) cholesterol levels (p = 0.04), lower high-density lipoprotein (HDL) cholesterol levels (p = 0.03), and higher hepatic fat levels (p = 0.02). Amongst glucose-related factors, long-term PM2.5 exposure was associated with higher levels of insulin area under the curve (p = 0.03). There were no other statistically significant associations with short- or long-term air pollutants and BMI, other measures of adiposity, and cardiometabolic outcomes. CONCLUSION: Higher exposure to regional air pollutants, namely prior 1-year average NO2, was associated with higher fasting serum lipid measures. These associations were more pronounced in obese participants, suggesting obesity may exacerbate the effects of air pollution exposure on lipid levels in young adults. This study did not find any other associations between short- and long-term ambient and NRAP exposures across a range of other obesity and cardiometabolic indicators. Further studies in young adults are warranted as our study suggests potential deleterious associations of both short- and long-term air pollution exposures and lipid metabolism.

3.
Hum Mol Genet ; 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31504550

RESUMO

Although hundreds of GWAS-implicated loci have been reported for adult obesity-related traits, less is known about the genetics specific for early-onset obesity, and with only a few studies conducted in non-European populations to date. Searching for additional genetic variants associated with childhood obesity, we performed a trans-ancestral meta-analysis of thirty studies consisting of up to 13,005 cases (≥95th percentile of BMI achieved 2-18 years old) and 15,599 controls (consistently <50th percentile of BMI) of European, African, North/South American and East Asian ancestry. Suggestive loci were taken forward for replication in a sample of 1,888 cases and 4,689 controls from seven cohorts of European and North/South American ancestry. In addition to observing eighteen previously implicated BMI or obesity loci, for both early and late onset, we uncovered one completely novel locus in this trans-ancestral analysis (nearest gene: METTL15). The variant was nominally associated in only the European subgroup analysis but had a consistent direction of effect in other ethnicities. We then utilized trans-ancestral Bayesian analysis to narrow down the location of the probable causal variant at each genome-wide significant signal. Of all the fine-mapped loci, we were able to narrow down the causative variant at four known loci to fewer than ten SNPs (FAIM2, GNPDA2, MC4R and SEC16B loci). In conclusion, an ethnically diverse setting has enabled us to both identify an additional pediatric obesity locus and further fine-map existing loci.

4.
Environ Int ; 130: 104935, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31238265

RESUMO

BACKGROUND: Air pollution exposure has been shown to increase the risk of obesity and metabolic dysfunction in animal models and human studies. However, the metabolic pathways altered by air pollution exposure are unclear, especially in adolescents and young adults who are at a critical period in the development of cardio-metabolic diseases. OBJECTIVES: The aim of this study was to examine the associations between air pollution exposure and indices of fatty acid and amino acid metabolism. METHODS: A total of 173 young adults (18-23 years) from eight Children's Health Study (CHS) Southern California communities were examined from 2014 to 2018. Near-roadway air pollution (NRAP) exposure (freeway and non-freeway) and regional air pollution exposure (nitrogen dioxide, ozone and particulate matter) during one year before the study visit were estimated based on participants' residential addresses. Serum concentrations of 64 targeted metabolites including amino acids, acylcarnitines, non-esterified fatty acid (NEFA) and glycerol were measured in fasting serum samples. Principal component analysis of metabolites was performed to identify metabolite clusters that represent key metabolic pathways. Mixed effects models were used to analyze the associations of air pollution exposure with metabolomic principal component (PC) scores and individual metabolite concentrations adjusting for potential confounders. RESULTS: Higher lagged one-year averaged non-freeway NRAP exposure was associated with higher concentrations of NEFA oxidation byproducts and higher NEFA-related PC score (all p's ≤ 0.038). The effect sizes were larger among obese individuals (interaction p = 0.047). Among females, higher freeway NRAP exposure was also associated with a higher NEFA-related PC score (p = 0.042). Among all participants, higher freeway NRAP exposure was associated with a lower PC score for lower concentrations of short- and median-chain acylcarnitines (p = 0.044). CONCLUSIONS: Results of this study indicate that NRAP exposure is associated with altered fatty acid metabolism, which could contribute to the metabolic perturbation in obese youth.

5.
JAMA ; 321(19): 1906-1915, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31112259

RESUMO

Importance: Exposure to air pollutants is a well-established cause of asthma exacerbation in children; whether air pollutants play a role in the development of childhood asthma, however, remains uncertain. Objective: To examine whether decreasing regional air pollutants were associated with reduced incidence of childhood asthma. Design, Setting, and Participants: A multilevel longitudinal cohort drawn from 3 waves of the Southern California Children's Health Study over a period of air pollution decline. Each cohort was followed up from 4th to 12th grade (8 years): 1993-2001, 1996-2004, and 2006-2014. Final follow-up for these data was June 2014. Population-based recruitment was from public elementary schools. A total of 4140 children with no history of asthma and residing in 1 of 9 Children's Health Study communities at baseline were included. Exposures: Annual mean community-level ozone, nitrogen dioxide, and particulate matter less than 10 µm (PM10) and less than 2.5 µm (PM2.5) in the baseline year for each of 3 cohorts. Main Outcomes and Measures: Prospectively identified incident asthma, collected via questionnaires during follow-up. Results: Among the 4140 children included in this study (mean [SD] age at baseline, 9.5 [0.6] years; 52.6% female [n = 2 179]; 58.6% white [n = 2273]; and 42.2% Hispanic [n = 1686]), 525 incident asthma cases were identified. For nitrogen dioxide, the incidence rate ratio (IRR) for asthma was 0.80 (95% CI, 0.71-0.90) for a median reduction of 4.3 parts per billion, with an absolute incidence rate decrease of 0.83 cases per 100 person-years. For PM2.5, the IRR was 0.81 (95% CI, 0.67-0.98) for a median reduction of 8.1 µg/m3, with an absolute incidence rate decrease of 1.53 cases per 100 person-years. For ozone, the IRR for asthma was 0.85 (95% CI, 0.71-1.02) for a median reduction of 8.9 parts per billion, with an absolute incidence rate decrease of 0.78 cases per 100 person-years. For PM10, the IRR was 0.93 (95% CI, 0.82-1.07) for a median reduction of 4.0 µg/m3, with an absolute incidence rate decrease of 0.46 cases per 100 person-years. Conclusions and Relevance: Among children in Southern California, decreases in ambient nitrogen dioxide and PM2.5 between 1993 and 2014 were significantly associated with lower asthma incidence. There were no statistically significant associations for ozone or PM10.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Asma/epidemiologia , Dióxido de Nitrogênio/efeitos adversos , Material Particulado/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Asma/etiologia , California/epidemiologia , Criança , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Feminino , Humanos , Incidência , Estudos Longitudinais , Masculino , Dióxido de Nitrogênio/análise , Ozônio/efeitos adversos , Ozônio/análise , Material Particulado/análise
6.
Environ Int ; 126: 445-453, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30844580

RESUMO

OBJECTIVE: To examine the prospective associations between exposure to perfluoroalkyl substances (PFASs) and longitudinal measurements of glucose metabolism in high-risk overweight and obese Hispanic children. METHODS: Forty overweight and obese Hispanic children (8-14 years) from urban Los Angeles underwent clinical measures and 2-hour oral glucose tolerance tests (OGTT) at baseline and a follow-up visit (range: 1-3 years after enrollment). Baseline plasma perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonic acid (PFHxS), and the plasma metabolome were measured by liquid-chromatography with high-resolution mass spectrometry. Multiple linear regression models were used to assess the association between baseline PFASs and changes in glucose homeostasis over follow-up. A metabolome-wide association study coupled with pathway enrichment analysis was performed to evaluate metabolic dysregulation associated with plasma PFASs concentrations. We performed a structural integrated analysis aiming to characterize the joint impact of all factors and to identify latent clusters of children with alterations in glucose homeostasis, based on their exposure and metabolomics profile. RESULTS: Each ln (ng/ml) increase in PFOA and PFHxS concentrations was associated with a 30.6 mg/dL (95% CI: 8.8-52.4) and 10.2 mg/dL (95% CI: 2.7-17.7) increase in 2-hour glucose levels, respectively. A ln (ng/ml) increase in PFHxS concentrations was also associated with 17.8 mg/dL increase in the glucose area under the curve (95% CI: 1.5-34.1). Pathway enrichment analysis showed significant alterations of lipids (e.g., glycosphingolipids, linoleic acid, and de novo lipogenesis), and amino acids (e.g., aspartate and asparagine, tyrosine, arginine and proline) in association to PFASs exposure. The integrated analysis identified a cluster of children with increased 2-h glucose levels over follow up, characterized by increased PFAS levels and altered metabolite patterns. CONCLUSIONS: This proof-of-concept analysis shows that higher PFAS exposure was associated with dysregulation of several lipid and amino acid pathways and longitudinal alterations in glucose homeostasis in Hispanic youth. Larger studies are needed to confirm these findings and fully elucidate the underlying biological mechanisms.


Assuntos
Ácidos Alcanossulfônicos/sangue , Caprilatos/sangue , Poluentes Ambientais/sangue , Fluorcarbonetos/sangue , Glucose/metabolismo , Sobrepeso/sangue , Adolescente , Aminoácidos/sangue , Criança , Feminino , Hispano-Americanos , Homeostase , Humanos , Lipídeos/sangue , Los Angeles , Masculino , Metabolômica
7.
Am J Clin Nutr ; 109(1): 99-108, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30596809

RESUMO

Background: Air pollution exposures are novel contributors to the growing childhood obesity epidemic. One possible mechanism linking air pollution exposures and obesity is through changes in food consumption patterns. Objective: The aim of this study was to examine the longitudinal association between childhood exposure to air pollutants and changes in diet among adolescents. Design: School-age children were enrolled in the Southern California Children's Health Study during 1993-1994 (n = 3100) and were followed for 4-8 y. Community-level regional air pollutants [e.g., nitrogen dioxide (NO2), elemental carbon (EC), and fine particles with aerodynamic diameter <2.5 µm (PM2.5)] were measured at central monitoring stations. Line dispersion modeling was used to estimate concentrations of traffic-related air pollutants based on nitrogen oxides (NOx) at participants' residential addresses. In addition, self-reported diet information was collected annually using a structured youth/adolescent food-frequency questionnaire during 1997-2001. Generalized linear mixed-effects models were used in the association analyses. Results: Higher exposures to regional and traffic-related air pollutants were associated with intake of a high-trans-fat diet, after adjusting for confounders including socioeconomic status and access to fast food in the community. A 2-SD (12.2 parts per billion) increase in regional NO2 exposure was associated with a 34% increased risk of consuming a high-trans-fat diet compared with a low-trans-fat diet (OR: 1.34; 95% CI: 1.05, 1.72). In addition, higher exposures to acid vapor, EC, PM2.5, and non-freeway NOx were all associated with higher consumption of dietary trans fat (all P < 0.04). Notably, higher exposures to regional NO2, acid vapor, and EC were also associated with a higher consumption of fast food (all P < 0.05). Conclusions: Childhood exposures to regional and traffic-related air pollutants were associated with increased consumption by adolescents of trans fat and fast foods. Our results indicate that air pollution exposures may contribute to obesogenic behaviors. This study was registered at clinicaltrials.gov as NCT03379298.


Assuntos
Dieta , Exposição Ambiental , Fast Foods/estatística & dados numéricos , Ácidos Graxos Trans/administração & dosagem , Emissões de Veículos , Adolescente , Comportamento do Adolescente , Poluentes Atmosféricos/análise , California , Criança , Registros de Dieta , Grupos Étnicos , Seguimentos , Preferências Alimentares , Comportamentos Relacionados com a Saúde , Humanos , Estudos Longitudinais , Dióxido de Nitrogênio/efeitos adversos , Obesidade , Fatores Socioeconômicos , Inquéritos e Questionários
8.
Mol Cell ; 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30472191

RESUMO

Cell dormancy is a widespread mechanism used by bacteria to evade environmental threats, including antibiotics. Here we monitored bacterial antibiotic tolerance and regrowth at the single-cell level and found that each individual survival cell shows different "dormancy depth," which in return regulates the lag time for cell resuscitation after removal of antibiotic. We further established that protein aggresome-a collection of endogenous protein aggregates-is an important indicator of bacterial dormancy depth, whose formation is promoted by decreased cellular ATP level. For cells to leave the dormant state and resuscitate, clearance of protein aggresome and recovery of proteostasis are required. We revealed that the ability to recruit functional DnaK-ClpB machineries, which facilitate protein disaggregation in an ATP-dependent manner, determines the lag time for bacterial regrowth. Better understanding of the key factors regulating bacterial regrowth after surviving antibiotic attack could lead to new therapeutic strategies for combating bacterial antibiotic tolerance.

9.
Obesity (Silver Spring) ; 26(12): 1938-1948, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30358166

RESUMO

OBJECTIVE: Asthmatic children who develop obesity through adolescence have poorer disease outcomes compared with those who do not. This study aimed to characterize the biology of childhood asthma complicated by adult obesity. METHODS: Gene expression networks are powerful statistical tools for characterizing human disease that leverage the putative coregulatory relationships of genes to infer relevant biological pathways. Weighted gene coexpression network analysis of gene expression data was performed in whole blood from 514 adult asthmatic subjects. Then, module preservation and association replication analyses were performed in 418 subjects from two independent asthma cohorts (one pediatric and one adult). RESULTS: A multivariate model was identified in which three gene coexpression network modules were associated with incident obesity in the discovery cohort (each P < 0.05). Two module memberships were enriched for genes in pathways related to platelets, integrins, extracellular matrix, smooth muscle, NF-κB signaling, and Hedgehog signaling. The network structures of each of the obesity modules were significantly preserved in both replication cohorts (permutation P = 9.999E-05). The corresponding module gene sets were significantly enriched for differential expression in subjects with obesity in both replication cohorts (each P < 0.05). CONCLUSIONS: The gene coexpression network profiles thus implicate multiple interrelated pathways in the biology of an important endotype of asthma with obesity.

10.
Curr Epidemiol Rep ; 5(2): 79-91, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30319933

RESUMO

Purpose of Review: Diabetes mellitus is a top contributor to the global burden of mortality and disability in adults. There has also been a slow, but steady rise in prediabetes and type 2 diabetes in youth. The current review summarizes recent findings regarding the impact of increased exposure to air pollutants on the type 2 diabetes epidemic. Recent Findings: Human and animal studies provide strong evidence that exposure to ambient and traffic-related air pollutants such as particulate matter (PM), nitrogen dioxide (NO2), and nitrogen oxides (NOx) play an important role in metabolic dysfunction and type 2 diabetes etiology. This work is supported by recent findings that have observed similar effect sizes for increased exposure to air pollutants on clinical measures of risk for type 2 diabetes in children and adults. Further, studies indicate that these effects may be more pronounced among individuals with existing risk factors, including obesity and prediabetes. Summary: Current epidemiological evidence suggests that increased air pollution exposure contributes to alterations in insulin signaling, glucose metabolism, and beta (ß)-cell function. Future work is needed to identify the specific detrimental pollutants that alter glucose metabolism. Additionally, advanced tools and new areas of investigation present unique opportunities to study the underlying mechanisms, including intermediate pathways, that link increased air pollution exposure with type 2 diabetes onset.

11.
Eur Respir J ; 52(3)2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30209194

RESUMO

The parallel epidemics of childhood asthma and obesity over the past few decades have spurred research into obesity as a risk factor for asthma. However, little is known regarding the role of asthma in obesity incidence. We examined whether early-onset asthma and related phenotypes are associated with the risk of developing obesity in childhood.This study includes 21 130 children born from 1990 to 2008 in Denmark, France, Germany, Greece, Italy, The Netherlands, Spain, Sweden and the UK. We followed non-obese children at 3-4 years of age for incident obesity up to 8 years of age. Physician-diagnosed asthma, wheezing and allergic rhinitis were assessed up to 3-4 years of age.Children with physician-diagnosed asthma had a higher risk for incident obesity than those without asthma (adjusted hazard ratio (aHR) 1.66, 95% CI 1.18-2.33). Children with active asthma (wheeze in the last 12 months and physician-diagnosed asthma) exhibited a higher risk for obesity (aHR 1.98, 95% CI 1.31-3.00) than those without wheeze and asthma. Persistent wheezing was associated with increased risk for incident obesity compared to never wheezers (aHR 1.51, 95% CI 1.08-2.09).Early-onset asthma and wheezing may contribute to an increased risk of developing obesity in later childhood.

12.
Environ Health ; 17(1): 64, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30213262

RESUMO

BACKGROUND: Evidence suggests that childhood near-roadway air pollution (NRAP) exposures contribute to increased body mass index (BMI); however, effects of NRAP exposure during the vulnerable periods including in utero and first year of life have yet to be established. In this study, we examined whether exposure to elevated concentrations of NRAP during in utero and/or first year of life increase childhood BMI growth. METHODS: Participants in the Children's Health Study enrolled from 2002 to 2003 with annual visits over a four-year period and who changed residences before study entry were included (n = 2318). Annual height and weight were measured and lifetime residential NRAP exposures including in utero and first year of life periods were estimated by nitrogen oxides (NOx) using the California line-source dispersion model. Linear mixed effects models assessed in utero or first year near-road freeway and non-freeway NOx exposures and BMI growth after adjusting for age, sex, race/ethnicity, parental education, Spanish questionnaire, and later childhood near-road NOx exposure. RESULTS: A two-standard deviation difference in first year of life near-road freeway NOx exposure was associated with a 0.1 kg/m2 (95% confidence interval (CI): 0.03, 0.2) faster increase in BMI growth per year and a 0.5 kg/m2 (95% CI: 0.02, 0.9) higher attained BMI at age 10 years. CONCLUSIONS: Higher exposure to early life NRAP increased the rate of change of childhood BMI and resulted in a higher attained BMI at age 10 years that were independent of later childhood exposures. These findings suggest that elevated early life NRAP exposures contribute to increased obesity risk in children.

14.
Nat Genet ; 50(8): 1072-1080, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30013184

RESUMO

Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis.

15.
Environ Res ; 161: 472-478, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29220800

RESUMO

BACKGROUND: Traffic-related air pollution (TRAP) exposure has been linked to type 2 diabetes and metabolic dysfunction in humans. Animal studies suggest that air pollutants may alter the composition of the gut microbiota, which may negatively impact metabolic health through changes in the composition and/or function of the gut microbiome. OBJECTIVES: The primary aim of this study was to determine whether elevated TRAP exposure was correlated with gut bacterial taxa in overweight and obese adolescents from the Meta-AIR (Metabolic and Asthma Incidence Research) study. The secondary aim was to examine whether gut microbial taxa correlated with TRAP were also correlated with risk factors for type 2 diabetes (e.g., fasting glucose levels). We additionally explored whether correlations between TRAP and these metabolic risk factors could be explained by the relative abundance of these taxa. METHODS: Participants (17-19 years; n=43) were enrolled between 2014 and 2016 from Southern California. The CALINE4 line dispersion model was used to model prior year residential concentrations of nitrogen oxides (NOx) as a marker of traffic emissions. The relative abundance of fecal microbiota was characterized by 16S rRNA sequencing and spearman partial correlations were examined after adjusting for body fat percent. RESULTS: Freeway TRAP was correlated with decreased Bacteroidaceae (r=-0.48; p=0.001) and increased Coriobacteriaceae (r=0.48; p<0.001). These same taxa were correlated with fasting glucose levels, including Bacteroidaceae (r=-0.34; p=0.04) and Coriobacteriaceae (r=0.41; p<0.01). Further, freeway TRAP was positively correlated fasting glucose (r=0.45; p=0.004) and Bacteroidaceae and Coriobacteriaceae explained 24% and 29% of the correlation between TRAP and fasting glucose levels. CONCLUSIONS: Increased TRAP exposure was correlated with gut microbial taxa and fasting glucose levels. Gut microbial taxa that were correlated with TRAP partially explained the correlation between TRAP and fasting glucose levels. These results suggest that exposure to air pollutants may negatively impact metabolic health via alterations in the gut microbiota.

16.
Dev Cogn Neurosci ; 33: 17-26, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29158072

RESUMO

Great advances have been made in functional Magnetic Resonance Imaging (fMRI) studies, including the use of longitudinal design to more accurately identify changes in brain development across childhood and adolescence. While longitudinal fMRI studies are necessary for our understanding of typical and atypical patterns of brain development, the variability observed in fMRI blood-oxygen-level dependent (BOLD) signal and its test-retest reliability in developing populations remain a concern. Here we review the current state of test-retest reliability for child and adolescent fMRI studies (ages 5-18 years) as indexed by intraclass correlation coefficients (ICC). In addition to highlighting ways to improve fMRI test-retest reliability in developmental cognitive neuroscience research, we hope to open a platform for dialogue regarding longitudinal fMRI study designs, analyses, and reporting of results.

17.
Am J Ophthalmol ; 184: 84-96, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28988897

RESUMO

PURPOSE: To study the long-term visual outcomes, complications, and prognostic factors for cataract surgery in extreme microphthalmos. DESIGN: Prospective cohort study. METHODS: Thirty eyes with simple microphthalmos (11 eyes, axial length [AL] <18 mm), complex microphthalmos (8 eyes, AL <18 mm), and relative anterior microphthalmos (RAM; 11 eyes, corneal diameter [CD] <8 mm) who underwent cataract surgery (phacoemulsification) in our hospital were followed for a mean of 25.3 months with at least 3 visits at early (1 day to 1 week), mid (1-3 months), and late (>6 months) stages after surgery. The main outcome measures included the best-corrected visual acuity (BCVA), intraocular pressure (IOP), and complications. RESULTS: Significant improvements of BCVA were observed at the mid and late postoperative visits in the entire cohort when compared with preoperative value (P < .05). When eyes were divided into 3 groups, a statistically significant improvement in late-stage BCVA was observed in the simple microphthalmos and RAM groups. The AL, preoperative anterior chamber depth (ACD), and preoperative BCVA were significant prognostic factors for late-stage BCVA after surgery. The most common complications were early corneal edema (73%), glaucoma (33%), and posterior capsular opacification (23%). Preoperative ACD was significantly associated with the incidence of glaucoma after surgery (P < .05). Severe complications included suprachoroidal hemorrhage (3%), endothelial dysfunction (7%), and retinal detachment (7%). CONCLUSIONS: Cataract surgery provided visual improvement in extreme microphthalmos (simple microphthalmos and RAM), with higher risks of complications than with routine cataract surgeries. Extreme microphthalmos with preoperative characteristics of relatively longer AL, deeper ACD, and better BCVA may benefit more from cataract surgery.


Assuntos
Comprimento Axial do Olho/diagnóstico por imagem , Extração de Catarata , Catarata/complicações , Córnea/patologia , Microftalmia/complicações , Acuidade Visual , Adulto , Câmara Anterior/patologia , Feminino , Seguimentos , Humanos , Masculino , Microftalmia/diagnóstico , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Índice de Gravidade de Doença , Fatores de Tempo , Tonometria Ocular
18.
Nat Commun ; 8(1): 524, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900112

RESUMO

Esophageal squamous dysplasia is believed to be the precursor lesion of esophageal squamous cell carcinoma (ESCC); however, the genetic evolution from dysplasia to ESCC remains poorly understood. Here, we applied multi-region whole-exome sequencing to samples from two cohorts, 45 ESCC patients with matched dysplasia and carcinoma samples, and 13 tumor-free patients with only dysplasia samples. Our analysis reveals that dysplasia is heavily mutated and harbors most of the driver events reported in ESCC. Moreover, dysplasia is polyclonal, and remarkable heterogeneity is often observed between tumors and their neighboring dysplasia samples. Notably, copy number alterations are prevalent in dysplasia and persist during the ESCC progression, which is distinct from the development of esophageal adenocarcinoma. The sharp contrast in the prevalence of the 'two-hit' event on TP53 between the two cohorts suggests that the complete inactivation of TP53 is essential in promoting the development of ESCC.The pathogenesis of oesophageal squamous cell carcinoma is a multi-step process but the genetic determinants behind this progression are unknown. Here the authors use multi-region exome sequencing to comprehensively investigate the genetic evolution of precursor dysplastic lesions and untransformed oesophagus.


Assuntos
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Exoma , Mutação , Lesões Pré-Cancerosas/genética , Variações do Número de Cópias de DNA , Carcinoma de Células Escamosas do Esôfago , Humanos , Perda de Heterozigosidade , Lesões Pré-Cancerosas/patologia , Análise de Sequência de DNA/métodos , Proteína Supressora de Tumor p53/genética
19.
Diabetes ; 66(7): 1789-1796, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28137791

RESUMO

Evidence suggests that ambient air pollution (AAP) exposure may contribute to the development of obesity and type 2 diabetes. The objective of this study was to determine whether exposure to elevated concentrations of nitrogen dioxide (NO2) and particulate matter with aerodynamic diameter <2.5 (PM2.5) had adverse effects on longitudinal measures of insulin sensitivity (SI), ß-cell function, and obesity in children at high risk for developing diabetes. Overweight and obese Latino children (8-15 years; n = 314) were enrolled between 2001 and 2012 from Los Angeles, CA, and followed for an average of 3.4 years (SD 3.1 years). Linear mixed-effects models were fitted to assess relationships between AAP exposure and outcomes after adjusting for covariates including body fat percent. Higher NO2 and PM2.5 were associated with a faster decline in SI and a lower SI at age 18 years, independent of adiposity. NO2 exposure negatively affected ß-cell function, evidenced by a faster decline in disposition index (DI) and a lower DI at age 18 years. Higher NO2 and PM2.5 exposures over follow-up were also associated with a higher BMI at age 18 years. AAP exposure may contribute to development of type 2 diabetes through direct effects on SI and ß-cell function.


Assuntos
Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Hispano-Americanos/estatística & dados numéricos , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Dióxido de Nitrogênio , Material Particulado , Obesidade Pediátrica/epidemiologia , Adiposidade , Adolescente , Glicemia/metabolismo , Índice de Massa Corporal , Criança , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Insulina/metabolismo , Modelos Lineares , Estudos Longitudinais , Los Angeles/epidemiologia , Masculino , Obesidade Pediátrica/metabolismo
20.
Am J Respir Crit Care Med ; 195(9): 1181-1188, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28103443

RESUMO

RATIONALE: Asthma and obesity often occur together in children. It is unknown whether asthma contributes to the childhood obesity epidemic. OBJECTIVES: We aimed to investigate the effects of asthma and asthma medication use on the development of childhood obesity. METHODS: The primary analysis was conducted among 2,171 nonobese children who were 5-8 years of age at study enrollment in the Southern California Children's Health Study (CHS) and were followed for up to 10 years. A replication analysis was performed in an independent sample of 2,684 CHS children followed from a mean age of 9.7 to 17.8 years. MEASUREMENTS AND MAIN RESULTS: Height and weight were measured annually to classify children into normal, overweight, and obese categories. Asthma status was ascertained by parent- or self-reported physician-diagnosed asthma. Cox proportional hazards models were fitted to assess associations of asthma history with obesity incidence during follow-up. We found that children with a diagnosis of asthma at cohort entry were at 51% increased risk of developing obesity during childhood and adolescence compared with children without asthma at baseline (hazard ratio, 1.51; 95% confidence interval, 1.08-2.10) after adjusting for confounders. Use of asthma rescue medications at cohort entry reduced the risk of developing obesity (hazard ratio, 0.57; 95% confidence interval, 0.33-0.96). In addition, the significant association between a history of asthma and an increased risk of developing obesity was replicated in an independent CHS sample. CONCLUSIONS: Children with asthma may be at higher risk of obesity. Asthma rescue medication use appeared to reduce obesity risk independent of physical activity.


Assuntos
Asma/complicações , Obesidade Pediátrica/etiologia , Adolescente , Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Criança , Feminino , Humanos , Masculino , Modelos de Riscos Proporcionais , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA