Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645309

RESUMO

Wheat pathogens, especially those causing powdery mildew and stripe rust, seriously threaten yield worldwide. Utilizing newly identified disease resistance genes from wheat relatives is an effective strategy to minimize disease damage. In this study, chromosome-specific molecular markers for the 3Sb and 7Sb chromosomes of Aegilops bicornis were developed using PCR-based landmark unique gene (PLUG) primers for screening wheat-Ae. bicornis progenies. Fluorescence in situ hybridization (FISH) was performed to further identify wheat-Ae. bicornis progenies using oligonucleotides probes Oligo-pSc119.2-1, Oligo-pTa535-1, and Oligo-(GAA)8. After establishing Ae. bicornis 3Sb and 7Sb chromosome-specific FISH markers, Holdfast (common wheat)-Ae. bicornis 3Sb addition, 7Sb addition, 3Sb(3A) substitution, 3Sb(3B) substitution, 3Sb(3D) substitution, 7Sb(7A) substitution, and 7Sb(7B) substitution lines were identified by the molecular and cytological markers. Stripe rust and powdery mildew resistance, along with agronomic traits were investigated to evaluate the breeding potential of these lines. Holdfast and Holdfast-Ae. bicornis progenies were all highly resistant to stripe rust, indicating that the stripe rust resistance might derive from Holdfast. However, Holdfast-Ae. bicornis 3Sb addition, 3Sb(3A) substitution, 3Sb(3B) substitution, and 3Sb(3D) substitution lines showed high resistance to powdery mildew while Holdfast was highly susceptible, indicating that chromosome 3Sb of Ae. bicornis carries previously unknown powdery mildew resistance gene(s). Additionally, the transfer of the 3Sb chromosome from Ae. bicornis to wheat significantly increased tiller number, but chromosome 7Sb has a negative effect on agronomic traits. Therefore, wheat germplasm containing Ae. bicornis chromosome 3Sb has potential to contribute to improving powdery mildew resistance and tiller number during wheat breeding.

2.
Front Plant Sci ; 12: 708551, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381484

RESUMO

Aegilops sharonensis, a wild relative of wheat, harbors diverse disease and insect resistance genes, making it a potentially excellent gene source for wheat improvement. In this study, we characterized and evaluated six wheat-A. sharonensis derivatives, which included three disomic additions, one disomic substitution + monotelosomic addition and two disomic substitution + disomic additions. A total of 51 PLUG markers were developed and used to allocate the A. sharonensis chromosomes in each of the six derivatives to Triticeae homoeologous groups. A set of cytogenetic markers specific for A. sharonensis chromosomes was established based on FISH using oligonucleotides as probes. Molecular cytogenetic marker analysis confirmed that these lines were a CS-A. sharonensis 2Ssh disomic addition, a 4Ssh disomic addition, a 4Ssh (4D) substitution + 5SshL monotelosomic addition, a 6Ssh disomic addition, a 4Ssh (4D) substitution + 6Ssh disomic addition and a 4Ssh (4D) substitution + 7Ssh disomic addition line, respectively. Disease resistance investigations showed that chromosome 7Ssh of A. sharonensis might harbor a new powdery mildew resistance gene, and therefore it has potential for use as resistance source for wheat breeding.

3.
Food Chem ; 297: 125000, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31253276

RESUMO

Wheat dough has been considered as a complex blend where gluten forms the continuous reticular skeleton and starch granules act as filling particles. The effect of starch on dough behaviors is not clear and the mechanism of starch affecting dough properties needs to be revealed. In this study, the micro-structure and physiochemical properties of starch from six wheat varieties (lines) with different dough properties were investigated, and the rheological properties of wheat dough were determined. Six varieties with significant different starch properties perform various dough behaviors, among which Xinmai 26 with preeminent dough quality has the highest amylose content, B-type starch granule content, short-range ordered degree and starch swelling power but lowest relative crystallinity and gelatinization enthalpy of starch. The findings indicate that starch physicochemical properties also influence the dough behaviors and provide helpful information for demonstrating the effects of starch on dough properties in the protein-starch matrix.


Assuntos
Amido/química , Triticum/metabolismo , Amilose/análise , Farinha/análise , Glutens/química , Reologia , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/ultraestrutura , Temperatura de Transição
4.
Sci Rep ; 9(1): 4773, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886203

RESUMO

This study characterized and evaluated a set of wheat-Aegilops comosa introgression lines, including six additions and one substitution. A total of 47 PLUG markers and a set of cytogenetic markers specific for Ae. comosa chromosomes were established after screening 526 PLUG primer pairs and performing FISH using oligonucleotides as probes. Marker analysis confirmed that these lines were wheat-Ae. comosa 2M-7M addition lines and a 6M(6A) substitution line. The molecular and cytogenetic markers developed herein could be used to trace Ae. comosa chromatin in wheat background. In order to evaluate the breeding value of the material, disease resistance tests and agronomical trait investigations were carried out on these alien chromosome introgression lines. Disease resistance tests showed that chromosomes 2M and 7M of Ae. comosa might harbor new stripe rust and powdery mildew resistance genes, respectively, therefore, they could be used as resistance sources for wheat breeding. Investigations into agronomical traits showed that all chromosomes 2M to 7M had detrimental effects on the agronomic performance of wheat, therefore, the selection of plants with relatively negative effects should be avoided when inducing wheat-A. comosa chromosome translocations using chromosome engineering procedures.


Assuntos
Aegilops/genética , Cromossomos de Plantas/genética , Resistência à Doença/genética , Doenças das Plantas/prevenção & controle , Triticum/genética , Engenharia Genética/métodos , Mutagênese Insercional , Oligonucleotídeos/genética , Doenças das Plantas/microbiologia
5.
BMC Genomics ; 20(1): 136, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30767761

RESUMO

BACKGROUND: Potassium (K) is essential to plant growth and development. Foxtail millet (Setaria italic L.) is an important fodder grain crop in arid and semi-arid regions of Asia and Africa because of its strong tolerance to drought and barren stresses. The molecular mechanisms of physiological and biochemical responses and regulations to various abiotic stresses such as low potassium conditions in foxtail millet are not fully understood, which hinders the research and exploitation of this valuable resource. RESULTS: In this research, we demonstrated that the millet variety Longgu 25 was the most insensitive variety to low potassium stress among other five varieties. The transcriptome analysis of Longgu 25 variety revealed a total of 26,192 and 26,849 genes from the K+-deficient and normal transcriptomic libraries by RNA-seq, respectively. A total of 1982 differentially expressed genes (DEGs) were identified including 866 up-regulated genes and 1116 down-regulated genes. We conducted a comparative analysis of these DEGs under low-K+ stress conditions and discovered 248 common DEGs for potassium deprivation among foxtail millet, rice and Arabidopsis. Further Gene Ontology (GO) enrichment analysis identified a series of candidate genes that may involve in K+-deficient response and in intersection of molecular functions among foxtail millet, rice and Arabidopsis. The expression profiles of randomly selected 18 candidate genes were confirmed as true DEGs with RT-qPCR. Furthermore, one of the 18 DEGs, SiMYB3, is specifically expressed only in the millet under low-K+ stress conditions. Overexpression of SiMYB3 promoted the main root elongation and improved K+ deficiency tolerance in transgenic Arabidopsis plants. The fresh weight of the transgenic plants was higher, the primary root length was longer and the root surface-area was larger than those of control plants after K+ deficiency treatments. CONCLUSIONS: This study provides a global view of transcriptomic resources relevant to the K+-deficient tolerance in foxtail millet, and shows that SiMYB3 is a valuable genetic resource for the improvement of K+ deficiency tolerance in foxtail millet.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Plantas/fisiologia , Potássio/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/fisiologia , Arabidopsis/genética , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Variação Genética , Ensaios de Triagem em Larga Escala , Oryza/genética , Fenótipo , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plântula/genética , Fatores de Transcrição/genética
6.
Front Genet ; 9: 12, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29441089

RESUMO

The 14-3-3 gene family members play key roles in various cellular processes. However, little is known about the numbers and roles of 14-3-3 genes in wheat. The aims of this study were to identify TaGF14 numbers in wheat by searching its whole genome through blast, to study the phylogenetic relationships with other plant species and to discuss the functions of TaGF14s. The results showed that common wheat harbored 20 TaGF14 genes, located on wheat chromosome groups 2, 3, 4, and 7. Out of them, eighteen TaGF14s are non-ε proteins, and two wheat TaGF14 genes, TaGF14i and TaGF14f, are ε proteins. Phylogenetic analysis indicated that these genes were divided into six clusters: cluster 1 (TaGF14d, TaGF14g, TaGF14j, TaGF14h, TaGF14c, and TaGF14n); cluster 2 (TaGF14k); cluster 3 (TaGF14b, TaGF14l, TaGF14m, and TaGF14s); cluster 4 (TaGF14a, TaGF14e, and TaGF14r); cluster 5 (TaGF14i and TaGF14f); and cluster 6 (TaGF14o, TaGF14p, TaGF14q, and TaGF14t). Tissue-specific gene expressions suggested that all TaGF14s were likely constitutively expressed, except two genes, i.e., TaGF14p and TaGF14f. And the highest amount of TaGF14 transcripts were observed in developing grains at 20 days post anthesis (DPA), especially for TaGF14j and TaGF14l. After drought stress, five genes, i.e., TaGF14c, TaGF14d, TaGF14g, TaGF14h, and TaGF14j, were up-regulated expression under drought stress for both 1 and 6 h, suggesting these genes played vital role in combating against drought stress. However, all the TaGF14s were down-regulated expression under heat stress for both 1 and 6 h, indicating TaGF14s may be negatively associated with heat stress by reducing the expression to combat heat stress or through other pathways. These results suggested that cluster 1, e.g., TaGF14j, may participate in the whole wheat developing stages, e.g., grain-filling (starch biosynthesis) and may also participate in combating against drought stress. Subsequently, a homolog of TaGF14j, TaGF14-JM22, were cloned by RACE and used to validate its function. Immunoblotting results showed that TaGF14-JM22 protein, closely related to TaGF14d, TaGF14g, and TaGF14j, can interact with AGP-L, SSI, SSII, SBEIIa, and SBEIIb in developing grains, suggesting that TaGF14s located on group 4 may be involved in starch biosynthesis. Therefore, it is possible to develop starch-rich wheat cultivars by modifying TaGF14s.

7.
Front Plant Sci ; 8: 1743, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29075275

RESUMO

Aegilops caudata is an important gene source for wheat breeding. Intensive evaluation of its utilization value is an essential first step prior to its application in breeding. In this research, the agronomical and quality traits of Triticum aestivum-Ae. caudata additions B-G (homoeologous groups not identified) were analyzed and evaluated. Disease resistance tests showed that chromosome D of Ae. caudata might possess leaf rust resistance, and chromosome E might carry stem rust and powdery mildew resistance genes. Investigations into agronomical traits suggested that the introduction of the Ae. caudata chromosome in addition line F could reduce plant height. Grain quality tests showed that the introduction of chromosomes E or F into wheat could increase its protein and wet gluten content. Therefore, wheat-Ae. caudata additions D-F are all potentially useful candidates for chromosome engineering activities to create useful wheat-alien chromosome introgressions. A total of 55 EST-based molecular markers were developed and then used to identify the chromosome homoeologous group of each of the Ae. caudata B-G chromosomes. Marker analysis indicated that the Ae. caudata chromosomes in addition lines B to G were structurally altered, therefore, a large population combined with intensive screening pressure should be taken into consideration when inducing and screening for wheat-Ae. caudata compensating translocations. Marker data also indicated that the Ae. caudata chromosomes in addition lines C-F were 5C, 6C, 7C, and 3C, respectively, while the homoeologous group of chromosomes B and G of Ae. caudata are as yet undetermined and need further research.

8.
Front Plant Sci ; 7: 1809, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27965701

RESUMO

Previous studies have shown that wheat grain yield is seriously affected by drought stress, and leaf cuticular wax is reportedly associated with drought tolerance. However, most studies have focused on cuticular wax biosynthesis and model species. The effects of cuticular wax on wheat drought tolerance have rarely been studied. The aims of the current study were to study the effects of leaf cuticular wax on wheat grain yield under drought stress using the above-mentioned wheat NILs and to discuss the possible physiological mechanism of cuticular wax on high grain yield under drought stress. Compared to water-irrigated (WI) conditions, the cuticular wax content (CWC) in glaucous and non-glaucous NILs under drought-stress (DS) conditions both increased; mean increase values were 151.1 and 114.4%, respectively, which was corroborated by scanning electronic microscopy images of large wax particles loaded on the surfaces of flag leaves. The average yield of glaucous NILs was higher than that of non-glaucous NILs under DS conditions in 2014 and 2015; mean values were 7368.37 kg·ha-1 and 7103.51 kg·ha-1. This suggested that glaucous NILs were more drought-tolerant than non-glaucous NILs (P = 0.05), which was supported by the findings of drought tolerance indices TOL and SSI in both years, the relatively high water potential and relative water content, and the low ELWL. Furthermore, the photosynthesis rate (Pn ) of glaucous and non-glaucous wheat NILs under DS conditions decreased by 7.5 and 9.8%, respectively; however, glaucous NILs still had higher mean values of Pn than those of non-glaucous NILs, which perhaps resulted in the higher yield of glaucous NILs. This could be explained by the fact that glaucous NILs had a smaller Fv/Fm reduction, a smaller PI reduction and a greater ABS/RC increase than non-glaucous NILs under DS conditions. This is the first report to show that wheat cuticular wax accumulation is associated with drought tolerance. Moreover, the leaf CWC can be an effective selection criterion in the development of drought-tolerant wheat cultivars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...