Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
J Virol ; : JVI0182721, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35020472

RESUMO

Human cytomegalovirus (HCMV) has a large (∼235-kb) genome with over 200 predicted open reading frames and exploits numerous cellular factors to facilitate its replication. A key feature of HCMV-infected cells is the emergence of a distinctive membranous cytoplasmic compartment termed the virion assembly compartment (vAC). Here we report that host protein WD repeat domain 11 (WDR11) plays a key role in vAC formation and virion morphogenesis. We found that WDR11 was up-regulated at both mRNA and protein levels during HCMV infection. At the late stage of HCMV replication, WDR11 relocated to the vAC and co-localized with markers of the trans-Golgi network (TGN) and vAC. Depletion of WDR11 hindered HCMV-induced membrane reorganization of the Golgi and TGN, altered vAC formation, and impaired HCMV secondary envelopment and virion morphogenesis. Further, motifs critical for the localization of WDR11 in TGN were identified by alanine-scanning mutagenesis. Mutation of these motifs led to WDR11 mislocation outside of the TGN and loss of vAC formation. Taken together, these data indicate that host protein WDR11 is required for efficient viral replication at the stage of virion assembly, possibly by facilitating the remodeling of the endomembrane system for vAC formation and virion morphogenesis. Importance During the late phase of human cytomegalovirus (HCMV) infection, the endomembrane system is dramatically reorganized, resulting in the formation of a unique structure termed the virion assembly compartment (vAC), which is critical for the assembly of infectious virions. The mechanism of HCMV-induced vAC formation is still not fully understood. In this report, we identified a host factor, WDR11, that plays an important role in vAC formation. Our findings argue that WDR11 contributes to the relocation of the Golgi and trans-Golgi network to the vAC, a membrane reorganization process that appears to be required for efficient virion maturation. The present work provides new insights into the vAC formation and HCMV virion morphogenesis and a potential novel target for anti-viral treatment.

2.
JCI Insight ; 7(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35014624

RESUMO

Congenital cytomegalovirus (cCMV) infection is the leading infectious cause of neurodevelopmental disorders. However, the neuropathogenesis remains largely elusive due to a lack of informative animal models. In this study, we developed a congenital murine CMV (cMCMV) infection mouse model with high survival rate and long survival period that allowed long-term follow-up study of neurodevelopmental disorders. This model involves in utero intracranial injection and mimics many reported clinical manifestations of cCMV infection in infants, including growth restriction, hearing loss, and impaired cognitive and learning-memory abilities. We observed that abnormalities in MRI/CT neuroimaging were consistent with brain hemorrhage and loss of brain parenchyma, which was confirmed by pathological analysis. Neuropathological findings included ventriculomegaly and cortical atrophy associated with impaired proliferation and migration of neural progenitor cells in the developing brain at both embryonic and postnatal stages. Robust inflammatory responses during infection were shown by elevated inflammatory cytokine levels, leukocyte infiltration, and activation of microglia and astrocytes in the brain. Pathological analyses and CT neuroimaging revealed brain calcifications induced by cMCMV infection and cell death via pyroptosis. Furthermore, antiviral treatment with ganciclovir significantly improved neurological functions and mitigated brain damage as shown by CT neuroimaging. These results demonstrate that this model is suitable for investigation of mechanisms of infection-induced brain damage and long-term studies of neurodevelopmental disorders, including the development of interventions to limit CNS damage associated with cCMV infection.

3.
Anal Chem ; 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34859666

RESUMO

In the present work, a novel, simple, and sensitive method for the direct determination of trace Sb in water samples was developed based on hydrogen-doped solution anode glow discharge-optical emission spectrometry (SAGD-OES). It was found that the vapor generation and excitation of Sb occurred simultaneously in the SAGD, contributing to the significant improvement in the sensitivity of Sb as compared with normal pure He-operated SAGD or solution cathode glow discharge. Besides, the proposed hydrogen-doped SAGD-OES could be operated even at pH = 14, which could reduce the interference of coexisting ions as many metal ions could be precipitated and removed. Our results demonstrated that the proposed method offered good tolerance to the interferences of Li, Na, Ca, Mg, Fe, Ni, Mn, and Zn ions even at a concentration of 50 mg L-1. Under optimized conditions, the limit of detection of Sb was 0.85 µg L-1, which was comparable to that of microplasma sources coupled with conventional hydride generation. The linearity of the Sb calibration curve reached R2 > 0.999 in the 5-5000 µg L-1 range. Finally, the accuracy of the proposed method was validated by the determination of certified reference materials [GSB 07-1376-2001 (1) and (2))] and real water samples. The proposed low-power (6 W), green, sensitive, rapid, and robust method provides a promising approach for on-site trace Sb analysis and may also be extended to other elements.

4.
Chemosphere ; 289: 133139, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863729

RESUMO

Flupyrimin and nitenpyram are emerging neonicotinoid insecticides that may cause potential harm to the human body. In the present work, the interactions of flupyrimin/nitenpyram with serum albumins under normal physiological conditions were thoroughly studied by using multiple spectroscopic techniques, DFT calculations and molecular docking. Flupyrimin/nitenpyram can quench the endogenous fluorescence of HSA/BSA and form a complex with HSA/BSA through a static process, causing conformational and secondary structure changes of HSA/BSA. Thermodynamic analysis shows that the combination of flupyrimin/nitenpyram with HSA/BSA is a spontaneous process, mainly driven by hydrogen bonds and hydrophobic forces. Site marking and molecular docking experiments indicated that flupyrimin/nitenpyram binds with HSA/BSA at site II (subdomain IIIA). The binding constant Ka in HSA-flupyrimin, HSA-nitenpyram, BSA-flupyrimin and BSA-nitenpyram systems at 298 K was 2.11 × 105 M-1, 2.35 × 105 M-1, 1.91 × 105 M-1 and 2.11 × 105 M-1, respectively. The binding constant Ka of nitenpyram with HSA/BSA was greater than flupyrimin, indicating that nitenpyram binds HSA/BSA was more stable than that of flupyrimin, which was consistent with the DFT calculation. In addition, the acute toxicity bioassay showed that flupyrimin and nitenpyram exhibited low toxicity to zebrafish, with 96 h LC50 values of 181.662 and 250.658 mg a. i. L-1, respectively. These results can help understand the interactions of flupyrimin/nitenpyram with HSA/BSA.

5.
J Virol ; : JVI0147621, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34730396

RESUMO

Human cytomegalovirus (HCMV) establishes a persistent/latent infection after primary infection, and host factor(s) plays a key role in regulating HCMV infection status. The spread of reactivated HCMV via the hematogenous or neural route usually results in severe diseases in newborns and immunocompromised individuals. As the primary reservoirs in vivo, cells of myeloid lineage have been utilized extensively to study HCMV infection. However, the molecular mechanism of HCMV latency/reactivation in neural cells is still poorly understood. We previously showed that HCMV infected T98G cells maintain a large number of viral genomes and support HCMV reactivation from latency upon cAMP/IBMX treatment. Here we employed iTRAQ-based proteomics to characterize cellular protein changes during HCMV latency and reactivation in T98G cells. A total of 168 differentially expressed proteins (DEPs) were identified, including 89 proteins in latency and 85 proteins in reactivation. Bioinformatics analysis showed that a few biological pathways were associated with HCMV latency or reactivation. Moreover, we validated 16 DEPs by both mRNA and protein expression profiles and further evaluated the effects of ApoE and PI3K pathway on HCMV infection. ApoE knockdown reduced HCMV loads and virus release, whereas overexpressing ApoE hampered HCMV latent infection, indicating a role in HCMV latency establishment/maintenance. Blocking the PI3K pathway by LY294002, a PI3K inhibitor, induced HCMV reactivation from latency in T98G cells. Overall, this comparative proteomic analysis delineates the cellular protein changes during HCMV latency and reactivation and provides a road map to advance our understanding of the mechanism(s) in the context of neural cells. IMPORTANCE Human cytomegalovirus (HCMV) is a highly transmissible beta-herpesvirus that has a prevalence of 60%-90% worldwide. This opportunist pathogen poses a significant threat to newborns and immunosuppressed individuals. One major obstacle for developing effective therapeutics is a poor understanding of HCMV latency/reactivation mechanisms. This study presents, for the first time, a systemic analysis of host cell protein expression changes during HCMV latency establishment and reactivation processes in neural cells. We showed that ApoE was downregulated by HCMV to facilitate latent infection. Also, the proteomic analysis has associated a few PI3K pathway-related proteins with HCMV reactivation. Altogether, this study highlights multiple host proteins and signaling pathways that can be further investigated as potential druggable targets for HCMV-related diseases, especially brain disorders.

6.
Medicine (Baltimore) ; 100(38): e26695, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34559094

RESUMO

INTRODUCTION: The efficacy of pregabalin for pain management of shoulder arthroscopy remains controversial. We conduct this meta-analysis to explore the influence of pregabalin versus placebo on the postoperative pain intensity of shoulder arthroscopy. METHODS: We have searched PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases through November 2019 for randomized controlled trials assessing the effect of pregabalin versus placebo on pain control of shoulder arthroscopy. This meta-analysis was performed using the random-effect model. RESULTS: Three randomized controlled trials were included in the meta-analysis. Overall, compared with control group for shoulder arthroscopy, pregabalin remarkably decreased pain scores at 0 to 1 hour (Std. MD = -0.57; 95% CI = -1.04 to -0.09; P = .02) and 12 hours (Std. MD = -0.37; 95% CI = -0.72 to -0.02; P = .04), as well as analgesic consumption (Std. MD = -1.84; 95% CI = -2.24 to -1.44; P < .00001), but showed no notable influence on pain scores at 24 hours (Std. MD = -0.54; 95% CI = -1.47 to 0.38; P = .25), nausea or vomiting (RR = 0.84; 95% CI = 0.53-1.33; P = .45), dizziness (RR = 1.14; 95% CI = 0.89-1.47; P = .30). CONCLUSIONS: Pregabalin may benefit to pain control after shoulder arthroscopy.


Assuntos
Analgésicos/uso terapêutico , Artroscopia , Dor Pós-Operatória/tratamento farmacológico , Pregabalina/uso terapêutico , Articulação do Ombro , Analgésicos/administração & dosagem , Humanos , Medição da Dor , Pregabalina/administração & dosagem , Ensaios Clínicos Controlados Aleatórios como Assunto
7.
Extremophiles ; 25(5-6): 483-492, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34533626

RESUMO

Two extremely halophilic archaea, isolates SYSU A00711T and SYSU A00630, were isolated from a sediment soil sample collected from the Aiding lake, China. Cells of these isolates were cocci, non-motile and stained Gram-negative. They grew optimally at 37 °C, with 20-22% NaCl (w/v) and at pH 7.5-8.0. Cells lysed in distilled water. Major polar lipids were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, mannosyl glucosyl diether, sulfated mannosyl glucosyl diether, and two unidentified glycolipids. Pairwise sequence comparison revealed that isolates SYSU A00711T and SYSU A00630 were closely related to Halegenticoccus soli SYSU A9-0T (94.1 and 94.0% 16S rRNA gene sequence similarities; 94.0 and 94.2% rpoB' gene similarities, respectively). The overall genomic relatedness indices values between the two isolates and Halegenticocus soli SYSU A9-0 T were: AAI, both 79.6%; ANI, 84.6 and 84.5%; dDDH, 32.5 and 26.3%, respectively. Phylogenetic trees based on the 16S rRNA gene, rpoB' gene, and genome sequences demonstrated a robust clade of these two isolates with Halegenticoccus soli SYSU A9-0T. The DNA G + C contents of these two isolates are both 64.7% (genome method). Based on the differences in phenotypic, chemotaxonomic, and phylogenetic properties, isolates SYSU A00711T and SYSU A00630 are characterized to represent a novel species in the genus Halegenticoccus, for which the name Halegenticoccus tardaugens sp. nov. is proposed. The type strain of the species Halegenticoccus tardaugens is SYSU A00711T (= KCTC 4245T = CGMCC 1.15768T).


Assuntos
Halobacteriaceae , Solo , China , DNA Arqueal , Halobacteriaceae/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
8.
PLoS One ; 16(8): e0256387, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34411194

RESUMO

Linear aggregation is present in some animals, such as the coordinated movement of ants and the migration of caterpillars and spinylobsters, but none has been reported on rotifers. The rotifers were collected and clone cultured in the laboratory at 25 ± 1°C, under natural light (light intensity ~130 lx, L:D = 14:10). The culture medium(pH = 7.3) was formulated as described by Suga et al., and rotifers were fed on the micro algae Scenedesmus obliquus grown in HB-4 medium to the exponential growth stage. When density was high (150 individuals ml-1), the behavior of rotifers was observed using a stereo microscope (Motic ES-18TZLED). In this paper, linear aggregation in Brachionus calyciflorus was found for the first time, and experiments were carried out to verify the correlation between linear aggregation and culture density of B. calyciflorus. With the increase of density, the number of aggregations increase, the number of individuals in the aggregation increased, and the maintenance time of the aggregation was also increased. Therefore, we speculate that the formation of aggregates is related to density and may be a behavioral signal of density increase, which may transmit information between density increase and formation of dormant eggs.

9.
Inflammation ; 44(6): 2580-2591, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34427851

RESUMO

Propofol (PPF) is reported to play a protective role in ischemia/reperfusion (I/R) injury, including cerebral ischemia-reperfusion injury (CIRI). This study aims to investigate the mechanism by which PPF ameliorates CIRI. Kunming mice were used to establish the middle cerebral artery occlusion (MCAO)/reperfusion mouse model in vivo. PPF pre-treatment was performed before CIRI. Lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) levels were detected to evaluate the tissue injury. PC12 cells were exposed to hypoxia/reoxygenation (H/R) to construct the in vitro CIRI model, and PC12 cells were pre-treated with PPF before H/R. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to detect the expression of lncRNA MALAT1 and miR-182-5p. Flow cytometry was used to detect the apoptosis of PC12 cells. Bioinformatics analysis, qRT-PCR, dual-luciferase reporter gene experiments, and RNA immunoprecipitation (RIP) experiments were performed to predict and validate the targeting relationship between MALAT1 and miR-182-5p. Western blot was used to detect Toll-like receptor 4 (TLR4) expression at protein level. PPF pre-treatment remarkably inhibited LDH and CPK levels in the serum of the mice with CIRI, and reduced the apoptosis of PC12 cells exposed to H/R. Besides, PPF pre-treatment markedly suppressed MALAT1 expression in both in vivo and in vitro models and upregulated miR-182-5p expression. MiR-182-5p was validated to be a downstream target gene of MALAT1, and MALAT1 could increase the expression of TLR4 by suppressing miR-182-5p. The effects of PPF on the injury of the mice brain and PC12 cells were partly counteracted by the restoration of MALAT1. PPF protects the brain against I/R-induced injury by regulating MALAT1/miR-182-5p/TLR4 axis.

10.
Nutr Cancer ; : 1-13, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34121543

RESUMO

Puffballs are a class of fungi widely distributed worldwide and associated with various bioactivities. This research mainly showed the antitumor bioactivity of extracts from Calvatia lilacina (CL), which is a common variety of puffballs. NMR and high-performance liquid chromatography methods are used to characterize the extracts. Results showed that CL extracts obtained with petroleum ether, ethyl acetate, ethanol, and water elicited obvious inhibitory effects on the proliferation of A549, Caco-2, and MDA-MB-231. Among these extracts, petroleum ether extract demonstrated the highest performance. This extract was then separated into seven sub-fractions (SFs). Three of these SFs (3#, 6#, and 7#) induces a decrease in the viability of MDA-MB-231 cells in which 7# SF exhibited the highest cytotoxicity, where the major component was found to be ergosta-7,22-dien-3-one. Further tests revealed that 7# SF from petroleum ether extract could trigger severe cell death in human breast cancer cells (MDA-MB-231) by activating the apoptotic pathway dependent on mitochondrial reactive oxygen species and caspase activation. All these results in combination indicate that the mechanism of extract-potentiated apoptosis associates closely with ROS-dependent mitochondrial dysfunction events which further induces mitochondria-mediated intrinsic cytochrome C-caspase-related pathway of apoptosis.Supplemental data for this article is available online at https://doi.org/10.1080/01635581.2021.1936576.

11.
J Invertebr Pathol ; 183: 107625, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34058216

RESUMO

Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the most serious pathogens in sericulture, and the underlying antiviral mechanism in silkworm is still unclear. Bombyx mori Nedd2-like caspase (BmNc) has been identified as a candidate antiviral gene from previous transcriptome data, since it is differentially expressed in the midgut of differentially resistant silkworm strains following BmNPV infection. However, the molecular mechanism by which BmNc responds to BmNPV is unknown. In this study, the relationship between BmNc and BmNPV was confirmed by its significantly different expression in different tissues of differentially resistant strains after BmNPV infection. Moreover, the antiviral role of BmNc was confirmed by the significantly higher fluorescence signals of BV-eGFP after knockdown of BmNc in BmN cells, and a reduced signal after overexpression. This was further verified by the capsid gene vp39 expression, DNA copy number, and GP64 protein level in the RNAi and overexpression groups. Furthermore, the antiviral phenomenon of BmNc was found to be associated with apoptosis. In brief, BmNc showed a relatively high expression level in the metamorphosis stages, and the effect of BmNc on BmNPV infection following RNAi and overexpression was eliminated after treatment with the inducer, Silvestrol, and the inhibitor, Z-DEVD-FMK, respectively. Therefore, it is reasonable to conclude that BmNc is involved in anti-BmNPV infection via the mitochondrial apoptosis pathway. The results provide valuable information for elucidating the molecular mechanism of silkworm resistance to BmNPV infection.

12.
Mitochondrial DNA B Resour ; 6(3): 1194-1196, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33829085

RESUMO

The complete mitochondrial genome of Brachionus rubens was sequenced using primers design, clone culture, DNA extraction, LONG-PCR amplification, purification and clone sequencing. We found that it is composed of two circular chromosomes, designated mtDNA I (11,398 bp) and mtDNA II (12,820 bp). The gene content of the B. rubens mitochondrial genome was similar to that of the previously reported mitochondrial genome of B. plicatilis. It contained 22 tRNA genes, 2 rRNA genes and 12 protein-coding genes (PCGs). Four of the 12 PCGs had an incomplete stop codons, TA(cob, atp6, nd3)or T(cox3). The A + T content of B. rubens mitochondrial genome was apparently higher (mtDNA-I 70.2% and mtDNA II 70.4%) than that of the mitochondrial genome of B. plicatilis (mtDNA-I 63.9% and mtDNA-II 62.9%).

13.
3 Biotech ; 11(3): 142, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33708465

RESUMO

Present study aims to investigate the combined effect of anticancer drug, norcantharidin (NCTD) in combination with glycolytic inhibitor, i.e. 2-deoxy-d-glucose (2-DG) in liver cancer (HepG2 and Hepa 1-6) cells. Cell viability of NCTD and 2-DG exposed cells was determined by MTT assay, whereas, colony-forming efficiency and migration rate was determined by clonogenic assay and wound healing assay, respectively. Nuclear DAPI staining and Annexin V FITC-PI staining were used to study the apoptosis induction in cells. Fluorescence microscopy imaging was performed to detect the intracellular reactive oxygen species (ROS) generation and mitochondrial membrane potential by staining with DCFDA and JC-1 dye, respectively. Cell viability assay revealed that NCTD and 2-DG exposure in combination displays more cytotoxic effect than a single drug. Additionally, cells lose their colony formation efficiency, as well as the reduced migration rate ability was also observed upon combined exposure. Increased nuclear condensation and mitochondrial membrane depolarization are considered as key features for apoptosis induction in cancerous cells. Furthermore, oxidative stress produced in cells due to enhanced intracellular ROS generation is also major probability for cellular damage. Thus, from the initial data it can be concluded that further preclinical studies will be needed to prove the efficacy of NCTD and 2-DG in hepatocellular carcinoma therapy.

14.
Nano Lett ; 21(7): 3245-3253, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33725455

RESUMO

Lithium metal electrodes have shown great promise for high capacity and the lowest potential. However, wide application is restricted by uncontrollable plating/stripping lithium behaviors, an uneven solid electrolyte interphase, and a lithium dendrite. Herein, the highly active single metal atom anchored in vacant catalyst is synthesized on the hierarchical porous nanocarbon (SACo/ADFS@HPSC). Acting as an artificial protective modulation layer on the lithium surface, the numerous atomic sites show the superiority in modulating lithium ion behaviors and smoothing the lithium surface without dendrite growth. As a consequence, the SACo/ADFS@HPSC-modified Li electrode lowers nucleation barrier (15 mV), extends the smooth plating lifespan (1600 h), and improves Coulombic efficiency, significantly accelerating the horizonal deposition of plated lithium. Coupled with a sulfur cathode, the fabricated pouch cell with 5.4 mg cm-2 delivers a high capacity of 3.78 mA h cm-2 corresponding to 1505 Wh kg-1, showing the promising practical application.

15.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 29(1): 259-264, 2021 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-33554831

RESUMO

OBJECTIVE: To investigate the difference in the therapeutic effect of plasma exchange and continuous renal replacement therapy (PE+CRRT) combined with chemotherapy in the treatment of children with severe Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis (EBV-HLH) and non-EBV-HLH. METHODS: The clinical data of 21 cases of all children with severe HLH treated by PE+CRRT combined with chemotherapy from January 2017 to January 2020 were collected and retrospectively analyzed. According to the presence of EBV infection, the children were divided into EBV+ group and EBV- group. The differences of the observation indexes between the children in the two groups and the improvement of the observation indexes of each group before and after treatment were compared. RESULTS: Among the 21 children, 14 were divided into the EBV+ group and 7 were divided into the EBV- group. There was no difference in age, sex and the number of organ damage between the children in the two groups (P>0.05). Duration of PE+CRRT was longer in the EBV+ group as compared with the EBV- group (P<0.05). Before treatment, the ANC in the EBV+ group was lower than that in the EBV- group (P<0.05), and there was no significant difference in the other observation indexes between the two groups (P>0.05). After treatment, Hb, Fib, APTT, SF, ALT, AST, LDH, Alb, CHE, TBil and TBA of the children in the EBV+ group were significantly improved as compared with those before treatment (P<0.05), but ANC, PLT, TG showed not improve (P>0.05); Fib, APTT, SF, LDH, Alb, and CHE in the EBV- group were significantly as improved compared with those before treatment (P<0.05), while the ANC, PLT, Hb, TG, ALT, AST, TBil, and TBA were not improved (P>0.05). After treatment, the differences of Fib and SF in the children between the EBV+ group and the EBV- group were statistically significant (P<0.05), and there was no significant difference in the other observation indexes of the children between the two groups (P>0.05). Compared with the children before treatment, EBV-DNA in the EBV+ group were decreased significantly in 2-4 weeks after treatment (P<0.05). After PE+CRRT combined with chemotherapy, the overall survival rate of the children with severe HLH was 66.7%, and there was no significant difference in overall survival rate between EBV+ group and EBV- group (P>0.05). CONCLUSION: PE+CRRT combined with chemotherapy can reduce serum ferritin quickly, then improve organ function, and increase the overall survival rate of severe HLH, and it is a good effect on children with severe EBV-HLH and non-EBV-HLH.


Assuntos
Infecções por Vírus Epstein-Barr , Linfo-Histiocitose Hemofagocítica , Criança , Terapia de Substituição Renal Contínua , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4 , Humanos , Troca Plasmática , Estudos Retrospectivos
16.
J Virol ; 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504601

RESUMO

We previously reported that human cytomegalovirus (HCMV) utilizes the cellular protein WD repeat-containing protein 5 (WDR5) to facilitate capsid nuclear egress. Here, we further show that HCMV infection results in WDR5 localization in a juxtanuclear region, and that its localization to this cellular site is associated with viral replication and late viral gene expression. Furthermore, WDR5 accumulated in the virion assembly compartment (vAC) and co-localized with vAC markers of gamma-tubulin (γ-tubulin), early endosomes, and viral vAC marker proteins pp65, pp28, and glycoprotein B (gB). WDR5 co-immunoprecipitated with multiple virion proteins, including MCP, pp150, pp65, pIRS1, and pTRS1, which may explain WDR5 accumulation in the vAC during infection. WDR5 fractionated with virions either in the presence or absence of Triton X-100 and was present in purified viral particles, suggesting that WDR5 was incorporated into HCMV virions. Thus, WDR5 localized to the vAC and was incorporated into virions, raising the possibility that in addition to capsid nuclear egress, WDR5 could also participate in cytoplasmic HCMV virion morphogenesis.Importance Human cytomegalovirus (HCMV) has a large (∼235-kb) genome that contains over 170 ORFs and exploits numerous cellular factors to facilitate its replication. In the late phase of HCMV infection cytoplasmic membranes are reorganized to establish the virion assembly compartment (vAC), which has been shown to necessary for efficient assembly of progeny virions. We previously reported that WDR5 facilitates HCMV nuclear egress. Here, we show that WDR5 is localized to the vAC and incorporated into virions, perhaps contributing to efficient virion maturation. Thus, findings in this study identified a potential role for WDR5 in HCMV assembly in the cytoplasmic phase of virion morphogenesis.

17.
Food Chem ; 343: 128493, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33158671

RESUMO

To investigate the effects of various duck sources on the lipid oxidation and aroma flavor of sauced-ducks, Mallard (ML), Sheldrake (SD), Muscovy (MC), and Cherry-Valley (CV) ducks were used in sauced-duck processing. The results showed significantly different thiobarbituric acid reactive substances (TBARS) values of the four samples (SD > CV > ML > MC, p < 0.05), while the contents of unsaturated fatty acids (UFAs) were ML > SD/CV > MC (p < 0.05). Altogether, 105 volatile flavor compounds were detected in sauced-ducks, including acids, alcohols, aldehydes, ketones, esters, hydrocarbons, furans, nitrogen compounds, and others. The volatile compounds were observed differentially composed in the four products, and nineteen potential characteristic biomarkers were explored. The correlation analysis indicated that the characteristic aroma flavor of sauced-ducks were significantly associated with specific free fatty acids. These information are useful for learning aroma formation and meat selection and identification in duck products.


Assuntos
Patos , Ácidos Graxos não Esterificados/análise , Carne/análise , Odorantes/análise , Animais , Ácidos Graxos não Esterificados/química , Paladar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...