Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3073, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654798

RESUMO

Quantum phase transitions in quantum matter occur at zero temperature between distinct ground states by tuning a nonthermal control parameter. Often, they can be accurately described within the Landau theory of phase transitions, similarly to conventional thermal phase transitions. However, this picture can break down under certain circumstances. Here, we present a comprehensive study of the effect of hydrostatic pressure on the magnetic structure and spin dynamics of the spin-1/2 ladder compound C9H18N2CuBr4. Single-crystal heat capacity and neutron diffraction measurements reveal that the Néel-ordered phase breaks down beyond a critical pressure of Pc ∼ 1.0 GPa through a continuous quantum phase transition. Estimates of the critical exponents suggest that this transition may fall outside the traditional Landau paradigm. The inelastic neutron scattering spectra at 1.3 GPa are characterized by two well-separated gapped modes, including one continuum-like and another resolution-limited excitation in distinct scattering channels, which further indicates an exotic quantum-disordered phase above Pc.

2.
Proc Natl Acad Sci U S A ; 119(18): e2119957119, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35486688

RESUMO

SignificancePhase separation is crucial to the functionalities of many correlated electron materials with notable examples including colossal magnetoresistance in manganites and high-Tc superconductivity in cuprates. However, the nonequilibrium phase-separation dynamics in such systems are poorly understood theoretically, partly because the required multiscale modeling is computationally very demanding. With the aid of machine-learning methods, we have achieved large-scale dynamical simulations in a representative correlated electron system. We observe an unusual relaxation process that is beyond the framework of classical phase-ordering theories. We also uncover a correlation-induced freezing behavior, which could be a generic feature of phase separation in correlated electron systems.

3.
Phys Rev Lett ; 127(14): 146401, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34652181

RESUMO

We present large-scale dynamical simulations of electronic phase separation in the single-band double-exchange model based on deep-learning neural-network potentials trained from small-size exact diagonalization solutions. We uncover an intriguing correlation-induced freezing behavior as doped holes are segregated from half filled insulating background during equilibration. While the aggregation of holes is stabilized by the formation of ferromagnetic clusters through Hund's coupling between charge carriers and local magnetic moments, this stabilization also creates confining potentials for holes when antiferromagnetic spin-spin correlation is well developed in the background. The dramatically reduced mobility of the self-trapped holes prematurely disrupts further growth of the ferromagnetic clusters, leading to an arrested phase separation. Implications of our findings for phase separation dynamics in materials that exhibit colossal magnetoresistance effect are discussed.

4.
Phys Rev E ; 103(3-1): 032134, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33862780

RESUMO

We present a comprehensive numerical study on the kinetics of phase transition that is characterized by two nonconserved scalar order parameters coupled by a special linear-quadratic interaction. This particular Ginzburg-Landau theory has been proposed to describe the coupled charge and magnetic transition in nickelates and the collinear stripe phase in cuprates. The inhomogeneous state of such systems at low temperatures consists of magnetic domains separated by quasimetallic domain walls where the charge order is reduced. By performing large-scale cell dynamics simulations, we find a two-stage phase-ordering process in which a short period of independent evolution of the two order parameters is followed by a correlated coarsening process. The long-time growth and coarsening of magnetic domains is shown to follow the Allen-Cahn power law. We further show that the nucleation-and-growth dynamics during phase transformation to the ordered states is well described by the Kolmogorov-Johnson-Mehl-Avrami theory in two dimensions. On the other hand, the presence of quasimetallic magnetic domain walls in the ordered states gives rise to a very different kinetics for transformation to the high-temperature paramagnetic phase. In this scenario, the phase transformation is initiated by the decay of magnetic domain walls into two insulator-metal boundaries, which subsequently move away from each other. Implications of our findings to recent nano-imaging experiments on nickelates are also discussed.

5.
Phys Rev E ; 104(6-1): 064105, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35030869

RESUMO

We introduce an efficient dynamical tree method that enables us to explicitly demonstrate the thermoremanent magnetization memory effect in a hierarchical energy landscape. Our simulation nicely reproduces the nontrivial waiting-time and waiting-temperature dependences in this nonequilibrium phenomenon. We further investigate the condensation effect, in which a small set of microstates dominates the thermodynamic behavior in the multilayer trap model. Importantly, a structural phase transition of the multilayer tree model is shown to coincide with the onset of the condensation phenomenon. Our results underscore the importance of hierarchical structure and demonstrate the intimate relation between the glassy behavior and structure of barrier trees.

6.
Phys Rev Lett ; 122(25): 257204, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31347885

RESUMO

We report a new classical spin liquid in which the collective flux degrees of freedom break the translation symmetry of the honeycomb lattice. This exotic phase exists in the frustrated spin-orbit magnets where a dominant off-diagonal exchange, the so-called Γ term, results in a macroscopic ground-state degeneracy at the classical level. We demonstrate that the system undergoes a phase transition driven by thermal order by disorder at a critical temperature T_{c}≈0.04|Γ|. This transition reduces the emergent spherical spin symmetry to a cubic one: spins point predominantly toward the cubic axes, yet seem to remain disordered at T

7.
Sci Adv ; 3(12): eaao4949, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29255802

RESUMO

Quasi-two-dimensional transition metal dichalcogenides exhibit dramatic properties that may transform electronic and photonic devices. We report on how the anomalously large magnetoresistance (MR) observed under high magnetic field in MoTe2, a type II Weyl semimetal, can be reversibly controlled under tensile strain. The MR is enhanced by as much as ~30% at low temperatures and high magnetic fields when uniaxial strain is applied along the a crystallographic direction and reduced by about the same amount when strain is applied along the b direction. We show that the large in-plane electric anisotropy is coupled with the structural transition from the 1T' monoclinic to the Td orthorhombic Weyl phase. A shift of the Td-1T' phase boundary is achieved by minimal tensile strain. The sensitivity of the MR to tensile strain suggests the possibility of a nontrivial spin-orbital texture of the electron and hole pockets in the vicinity of Weyl points. Our ab initio calculations show a significant orbital mixing on the Fermi surface, which is modified by the tensile strains.

8.
Phys Rev Lett ; 118(22): 226401, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28621967

RESUMO

We present a formulation of quantum molecular dynamics that includes electron correlation effects via the Gutzwiller method. Our new scheme enables the study of the dynamical behavior of atoms and molecules with strong electron interactions. The Gutzwiller approach goes beyond the conventional mean-field treatment of the intra-atomic electron repulsion and captures crucial correlation effects such as band narrowing and electron localization. We use Gutzwiller quantum molecular dynamics to investigate the Mott transition in the liquid phase of a single-band metal and uncover intriguing structural and transport properties of the atoms.

9.
J Phys Condens Matter ; 29(4): 044004, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27897133

RESUMO

We present a numerical study on the thermal activated avalanche dynamics in granular materials composed of ferromagnetic clusters embedded in a non-magnetic matrix. A microscopic dynamical simulation based on the reaction-diffusion process is developed to model the magnetization process of such systems. The large-scale simulations presented here explicitly demonstrate inter-granular collective behavior induced by thermal activation of spin tunneling. In particular, we observe an intriguing criticality controlled by the rate of energy dissipation. We show that thermal activated avalanches can be understood in the framework of continuum percolation and the emergent dissipation induced criticality is in the universality class of 3D percolation transition. Implications of these results to the phase-separated states of colossal magnetoresistance materials and other artificial granular magnetic systems are also discussed.

10.
Phys Rev Lett ; 117(20): 206601, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27886479

RESUMO

We study the transport properties of frustrated itinerant magnets comprising localized classical moments, which interact via exchange with the conduction electrons. Strong frustration stabilizes a liquidlike spin state, which extends down to temperatures well below the effective Ruderman-Kittel-Kasuya-Yosida interaction scale. The crossover into this state is characterized by spin structure factor enhancement at wave vectors smaller than twice the Fermi wave vector magnitude. The corresponding enhancement of electron scattering generates a resistivity upturn at decreasing temperatures.

11.
Opt Lett ; 40(24): 5806-9, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26670517

RESUMO

The kagome lattice is a two-dimensional network of corner-sharing triangles and is often associated with geometrical frustration. In particular, the frustrated coupling between waveguide modes in a kagome array leads to a dispersionless flat band consisting of spatially localized modes. Here we propose a complex photonic lattice by placing PT-symmetric dimers at the kagome lattice points. Each dimer corresponds to a pair of strongly coupled waveguides. With balanced arrangement of gain and loss on individual dimers, the system exhibits a PT-symmetric phase for finite gain/loss parameter up to a critical value. The beam evolution in this complex kagome waveguide array exhibits a novel oscillatory rotation of optical power along the propagation distance. Long-lived local chiral structures originating from the nearly flat bands of the kagome structure are observed when the lattice is subject to a narrow beam excitation.

12.
Phys Rev Lett ; 113(18): 187201, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25396391

RESUMO

We show how Raman spectroscopy can serve as a valuable tool for diagnosing quantum spin liquids (QSL). We find that the Raman response of the gapless QSL of the Kitaev-Heisenberg model exhibits signatures of spin fractionalization into Majorana fermions, which give rise to a broad signal reflecting their density of states, and Z(2) gauge fluxes, which also contribute a sharp feature. We discuss the current experimental situation and explore more generally the effect of breaking the integrability on response functions of Kitaev spin liquids.

13.
Phys Rev Lett ; 112(15): 155702, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24785055

RESUMO

We study the triangular lattice Ising model with a finite number of vertically stacked layers and demonstrate a low temperature reentrance of two Berezinskii-Kosterlitz-Thouless transitions, which results in an extended disordered regime down to T=0. Numerical results are complemented with the derivation of an effective low-temperature dimer theory. Contrary to order by disorder, we present a new scenario for fluctuation-induced ordering in frustrated spin systems. While short-range spin-spin correlations are enhanced by fluctuations, quasi-long-range ordering is precluded at low enough temperatures by proliferation of topological defects.

14.
Phys Rev Lett ; 112(1): 017207, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24483929

RESUMO

We study vanadium spinels AV2O4 (A = Cd,Mg) in pulsed magnetic fields up to 65 T. A jump in magnetization at µ0H≈40 T is observed in the single-crystal MgV2O4, indicating a field induced quantum phase transition between two distinct magnetic orders. In the multiferroic CdV2O4, the field induced transition is accompanied by a suppression of the electric polarization. By modeling the magnetic properties in the presence of strong spin-orbit coupling characteristic of vanadium spinels, we show that both features of the field induced transition can be successfully explained by including the effects of the local trigonal crystal field.

15.
Phys Rev Lett ; 112(2): 020601, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24483997

RESUMO

We propose a novel four-coloring model which describes "frustrated superfluidity" of p-band bosons in the diamond optical lattice. The superfluid phases of the condensate wave functions on the diamond-lattice bonds are mapped to four distinct colors at low temperatures. The fact that a macroscopic number of states satisfy the constraints that four differently colored bonds meet at the same site leads to an extensive degeneracy in the superfluid ground state at the classical level. We demonstrate that the phase of the superfluid wave function as well as the orbital angular momentum correlations exhibit a power-law decay in the degenerate manifold that is described by an emergent magnetostatic theory with three independent flux fields. Our results thus provide a novel example of critical superfluid phase with algebraic order in three dimensions. We further show that quantum fluctuations favor a Néel ordering of orbital angular moments with broken sublattice symmetry through the order-by-disorder mechanism.

16.
Phys Rev Lett ; 111(17): 177201, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24206515

RESUMO

Although initially introduced to mimic the spin-ice pyrochlores, no artificial spin ice has yet exhibited the expected degenerate ice phase with critical correlations similar to the celebrated Coulomb phase in the pyrochlore lattice. Here we study a novel artificial spin ice based on a vertex-frustrated rather than pairwise frustrated geometry and show that it exhibits a quasicritical ice phase of extensive residual entropy and, significantly, algebraic correlations. Interesting in its own regard as a novel realization of frustration in a vertex system, our lattice opens new pathways to study defects in a critical manifold and to design degeneracy in artificial magnetic nanoarrays, a task so far elusive.

17.
Nature ; 500(7464): 553-7, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23985872

RESUMO

Artificial spin ice is a class of lithographically created arrays of interacting ferromagnetic nanometre-scale islands. It was introduced to investigate many-body phenomena related to frustration and disorder in a material that could be tailored to precise specifications and imaged directly. Because of the large magnetic energy scales of these nanoscale islands, it has so far been impossible to thermally anneal artificial spin ice into desired thermodynamic ensembles; nearly all studies of artificial spin ice have either treated it as a granular material activated by alternating fields or focused on the as-grown state of the arrays. This limitation has prevented experimental investigation of novel phases that can emerge from the nominal ground states of frustrated lattices. For example, artificial kagome spin ice, in which the islands are arranged on the edges of a hexagonal net, is predicted to support states with monopolar charge order at entropies below that of the previously observed pseudo-ice manifold. Here we demonstrate a method for thermalizing artificial spin ices with square and kagome lattices by heating above the Curie temperature of the constituent material. In this manner, artificial square spin ice achieves unprecedented thermal ordering of the moments. In artificial kagome spin ice, we observe incipient crystallization of the magnetic charges embedded in pseudo-ice, with crystallites of magnetic charges whose size can be controlled by tuning the lattice constant. We find excellent agreement between experimental data and Monte Carlo simulations of emergent charge-charge interactions.

18.
Artigo em Inglês | MEDLINE | ID: mdl-23848673

RESUMO

We propose that a system of colloidal particles interacting with a honeycomb array of optical traps that each contain three wells can be used to realize a fully packed loop model. One of the phases in this system can be mapped to Baxter's three-coloring problem, offering an easily accessible physical realization of this problem. As a function of temperature and interaction strength, we find a series of phases, including long range ordered loop or stripe states, stripes with sliding symmetries, random packed loop states, and disordered states in which the loops break apart. Our geometry could be constructed using ion trap arrays, BEC vortices in optical traps, or magnetic vortices in nanostructured superconductors.


Assuntos
Coloides/química , Coloides/efeitos da radiação , Cristalização/métodos , Modelos Químicos , Modelos Moleculares , Pinças Ópticas , Simulação por Computador , Luz
19.
Phys Rev Lett ; 110(7): 077201, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25166398

RESUMO

Ever since the experiments which founded the field of highly frustrated magnetism, the kagome Heisenberg antiferromagnet has been the archetypical setting for the study of fluctuation induced exotic ordering. To this day the nature of its classical low-temperature state has remained a mystery: the nonlinear nature of the fluctuations around the exponentially numerous harmonically degenerate ground states has not permitted a controlled theory, while its complex energy landscape has precluded numerical simulations at low temperature, T. Here we present an efficient Monte Carlo algorithm which removes the latter obstacle. Our simulations detect a low-temperature regime in which correlations asymptote to a remarkably small value as T→0. Feeding these results into an effective model and analyzing the results in the framework of an appropriate field theory implies the presence of long-range dipolar spin order with a tripled unit cell.

20.
Phys Rev Lett ; 110(14): 146602, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-25167019

RESUMO

We investigate the transport properties of itinerant electrons interacting with a background of localized spins in a correlated paramagnetic phase of the pyrochlore lattice. We find a residual resistivity at zero temperature due to the scattering of electrons by the static dipolar spin-spin correlation that characterizes the metallic Coulomb phase. As temperature increases, thermally excited topological defects, also known as magnetic monopoles, reduce the spin correlation, hence suppressing electron scattering. Combined with the usual scattering processes in metals at higher temperatures, this mechanism yields a nonmonotonic resistivity, displaying a minimum at temperature scales associated with the magnetic monopole excitation energy. Our calculations agree quantitatively with resistivity measurements in Nd(2)Ir(2)O(7) and Pr(2)Ir(2)O(7), shedding light on the origin of the resistivity minimum observed in metallic spin-ice compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...