Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 7: 12664, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27585637

RESUMO

Magnonic devices that utilize electric control of spin waves mediated by complex spin textures are an emerging direction in spintronics research. Room-temperature multiferroic materials, such as bismuth ferrite (BiFeO3), would be ideal candidates for this purpose. To realize magnonic devices, a robust long-range spin cycloid with well-known direction is desired, since it is a prerequisite for the magnetoelectric coupling. Despite extensive investigation, the stabilization of a large-scale uniform spin cycloid in nanoscale (100 nm) thin BiFeO3 films has not been accomplished. Here, we demonstrate cycloidal spin order in 100 nm BiFeO3 thin films through the careful choice of crystallographic orientation, and control of the electrostatic and strain boundary conditions. Neutron diffraction, in conjunction with X-ray diffraction, reveals an incommensurate spin cycloid with a unique [11] propagation direction. While this direction is different from bulk BiFeO3, the cycloid length and Néel temperature remain equivalent to bulk at room temperature.

2.
Cell Signal ; 25(12): 2362-73, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23896121

RESUMO

1α,25-Dihydroxyvitamin D3 (1α,25(OH)2D3) regulates osteoblasts through genomic and rapid membrane-mediated responses. Here we examined the interaction of protein disulfide isomerase family A, member 3 (Pdia3) and the traditional vitamin D receptor (VDR) in plasma membrane-associated responses to 1α,25(OH)2D3. We found that Pdia3 co-localized with VDR and the caveolae scaffolding protein, caveolin-1 on the surface of MC3T3-E1 osteoblasts. Immunoprecipitation showed that both Pdia3 and VDR interacted with caveolin-1. Pdia3 further interacted with phospholipase A2 activating protein (PLAA), whereas VDR interacted with c-Src. 1α,25(OH)2D3 changed the interactions and transport of the two receptors and rapidly activated phospholipase A2 (PLA2) and c-Src. Silencing either receptor or caveolin-1 inhibited both PLA2 and c-Src, indicating that the two receptors function interdependently. These two receptor dependent rapid responses to 1α,25(OH)2D3 regulated gene expression, proliferation and apoptosis of MC3T3-E1 cells. These data demonstrate the importance of both receptors and caveolin-1 in mediating membrane responses to 1α,25(OH)2D3 and subsequently regulating osteoblast biology.


Assuntos
Osteoblastos/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Receptores de Calcitriol/metabolismo , Vitamina D/análogos & derivados , Células 3T3 , Animais , Proteína Tirosina Quinase CSK , Caveolina 1/metabolismo , Membrana Celular/metabolismo , Camundongos , Osteoblastos/citologia , Proteínas/metabolismo , Transdução de Sinais , Vitamina D/metabolismo , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA