Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 166: 105985, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34455087

RESUMO

Non-ideal behaviour of mixed ions is disclosed in skin absorption experiments of mixed halide anions in excised pig skin. Comparison of skin absorption of pure and mixed ions shows enhanced penetration of chaotropic ions from mixed solutions. An experimental design and statistical analysis using a Scheffé {3,2} simplex-lattice allows investigating the full ternary diagram of anion mixtures of fluoride, bromide and iodide. Synergism in mixed absorption is observed for chaotropic bromide and iodide anions. A refined analysis highlighting specific interactions is made by considering the ratio of the absorbed amount to the ion activity instead of the directly measured absorbed amount. Statistical analysis discards non-significant effects and discloses specific interactions. Such interactions between bromide and iodide cause an absorption enhancement of their partner by a factor of 2-3 with respect to the case of ideal mixing. It is proposed that enhanced absorption from mixed solution involves the formation of neutral complex species of mixed bromide and iodide with endogenous magnesium or calcium inside stratum corneum.


Assuntos
Absorção Cutânea , Água , Animais , Ânions/metabolismo , Fluoretos/metabolismo , Pele/metabolismo , Soluções , Suínos , Água/metabolismo
2.
Langmuir ; 37(26): 7975-7985, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34170134

RESUMO

The interactions of mono-rhamnolipids (mono-RLs) with model membranes were investigated through a biomimetic approach using phospholipid-based liposomes immobilized on a gold substrate and also by the multiparametric surface plasmon resonance (MP-SPR) technique. Biotinylated liposomes were bound onto an SPR gold chip surface coated with a streptavidin layer. The resulting MP-SPR signal proved the efficient binding of the liposomes. The thickness of the liposome layer calculated by modeling the MP-SPR signal was about 80 nm, which matched the average diameter of the liposomes. The mono-RL binding to the film of the phospholipid liposomes was monitored by SPR and the morphological changes of the liposome layer were assessed by modeling the SPR signal. We demonstrated the capacity of the MP-SPR technique to characterize the different steps of the liposome architecture evolution, i.e., from a monolayer of phospholipid liposomes to a single phospholipid bilayer induced by the interaction with mono-RLs. Further washing treatment with Triton X-100 detergent left a monolayer of phospholipid on the surface. As a possible practical application, our method based on a biomimetic membrane coupled to an SPR measurement proved to be a robust and sensitive analytical tool for the detection of mono-RLs with a limit of detection of 2 µg mL-1.


Assuntos
Lipossomos , Ressonância de Plasmônio de Superfície , Decanoatos , Fosfolipídeos , Ramnose/análogos & derivados
3.
Int J Cosmet Sci ; 43(4): 432-445, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33964042

RESUMO

OBJECTIVE: Pickering emulsions are increasingly used in the pharmaceutical and cosmetic fields, especially for topical applications, since these systems require solid particles as emulsifiers instead of surfactants which are known to cause skin irritation. The solid inorganic nanoparticles (TiO2 and ZnO) used as UV filters in sunscreen formulations may also stabilize emulsion droplets, so that the utility of surfactants may be questioned. Surfactant-free sunscreen emulsions solely stabilized by such nanoparticles (NPs) have been studied. METHODS: The ability of these NPs to stabilize o/w emulsions containing a 'model' oil phase, the C12 -C15 alkylbenzoate, has been assessed. ZnO and hydrophilic silica-coated TiO2 NPs widely used in sunscreen products were used together with their mixtures. The emulsification efficiency, the control of droplet size and the stability of o/w Pickering emulsions solely stabilized by NPs were investigated. A ZnO/TiO2 NPs mixture characterized by a theoretical SPF of 45 was finally used as unique emulsifiers to develop a surfactant-free sunscreen emulsion. RESULTS: Stable Pickering emulsions containing 10 up to 60 wt% of C12 -C15 alkyl benzoate were formulated with 2 wt% ZnO in the aqueous phase. The droplet size was controlled by the solid NPs content with respect to oil and the emulsification process. Hydrophilic TiO2 NPs did not allow the stabilization of emulsions. The substitution of TiO2 for ZnO up to 60-70 wt% in a 20/80 o/w emulsion was successfully performed. Finally, a ZnO/TiO2 NP mixture was tested as unique emulsifier system for the formulation of a sunscreen cream. Despite a lower viscosity, the obtained Pickering emulsion was stable and exhibited a photoprotective effect similar to the corresponding surfactant-based sunscreen cream with an in vitro SPF of about 45. CONCLUSION: Surfactant-free Pickering emulsions can be stabilized by the UV-filter nanoparticles for the manufacture of sunscreen products.

4.
J Control Release ; 333: 579-592, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33838210

RESUMO

In this work, nanocomposites that combine mucopenetrating and mucoadhesive properties in a single system are proposed as innovative strategy to increase drug residence time in the intestine following oral administration. To this aim, novel mucoadhesive chitosan (CH) sponges loaded with mucopenetrating nanoemulsions (NE) were developed via freeze-casting technique. The NE mucopenetration ability was determined studying the surface affinity and thermodynamic binding of the nanosystem with mucins. The ability of nanoparticles to penetrate across a preformed mucins layer was validated by 3D-time laps Confocal Laser Scanning Microscopy imaging. Microscopy observations (Scanning Electron Microscopy and Optical Microscopy) showed that NE participated in the structure of the sponge affecting its stability and in vitro release kinetics. When incubated with HCT 116 and Caco-2 cell lines, the NE proved to be cytocompatible over a wide concentration range. Finally, the in vivo biodistribution of the nanocomposite was evaluated after oral gavage in healthy mice. The intestinal retention of NE was highly enhanced when loaded in the sponge compared to the NE suspension. Overall, our results demonstrated that the developed nanocomposite sponge is a promising system for sustained drug intestinal delivery.


Assuntos
Quitosana , Nanocompostos , Nanopartículas , Administração Oral , Animais , Células CACO-2 , Sistemas de Liberação de Medicamentos , Humanos , Intestinos , Camundongos , Distribuição Tecidual
5.
Sensors (Basel) ; 21(5)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33670860

RESUMO

Gadolinium is extensively used in pharmaceuticals and is very toxic, so its sensitive detection is mandatory. This work presents the elaboration of a gadolinium chemical sensor based on 2-methylpyridine-substituted cyclam thin films, deposited on gold electrodes, using electrochemical impedance spectroscopy (EIS). The 2-methylpyridine-substituted cyclam (bis-N-MPyC) was synthesized in three steps, including the protection of cyclam by the formation of its CH2-bridged aminal derivative; the product was characterized by liquid 1H and 13C NMR spectroscopy. Spin-coated thin films of bis-N-MPyC on gold wafers were characterized by means of infrared spectroscopy in ATR (Attenuated Total Reflectance) mode, contact angle measurements and atomic force microscopy. The impedimetric chemical sensor was studied in the presence of increasing concentrations of lanthanides (Gd3+, Eu3+, Tb3+, Dy3+). Nyquist plots were fitted with an equivalent electrical circuit including two RC circuits in series corresponding to the bis-N-MPyC film and its interface with the electrolyte. The main parameter that varies with gadolinium concentration is the resistance of the film/electrolyte interface (Rp), correlated to the rate of exchange between the proton and the lanthanide ion. Based on this parameter, the detection limit obtained is 35 pM. The bis-N-MPyC modified gold electrode was tested for the detection of gadolinium in spiked diluted negative urine control samples.


Assuntos
Técnicas Biossensoriais , Ouro , Espectroscopia Dielétrica , Eletrodos , Gadolínio , Compostos Heterocíclicos , Limite de Detecção , Picolinas
6.
Chemistry ; 27(6): 2175-2183, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33146917

RESUMO

A new way to freeze molecular imprints in a polymer material is reported. So far, molecular imprinted polymers (MIP) involve copolymerization of a functional monomer and large amounts of cross-linking agent, which keeps the template shape memory in rigid molecular imprints. MIP materials are prepared herein without cross-linking agent. Stiff chains of polyaniline grafted on a solid support as a brush-like material achieve the necessary rigidity. Differential adsorption to imprinted and non-imprinted materials provides evidence of molecular imprints. A correct adsorption isotherm for mobile adsorbed layers (Volmer isotherm) is introduced instead of the popular but inadequate Langmuir isotherm. Non-selective adsorption is entropic, whereas adsorption to molecular imprints has an enthalpic contribution coming from specific interactions. Fast adsorption kinetics are a definite benefit with regards to applications such as chromatographic separations and chemical sensors.

7.
Int J Pharm ; 592: 120092, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33212173

RESUMO

Emulsified systems are widely used for topical delivery with the aim of optimizing cutaneous absorption and offering a pleasant sensory. They also may provide a protection of the active molecule against oxidation and/or degradation. The oil phase of o/w emulsions may consist of liquid crystalline structures, especially lamellar structures which are similar to those found in the stratum corneum lipids. In the present work, o/w emulsions containing liquid crystals of mixed cetyl alcohol and Polysorbate 60 were developed for topical delivery of vitamin C, a potent antioxidant with several applications in the cosmetic and pharmaceutical fields. In addition to the well-documented lipid supplementation of the stratum corneum, the liquid crystal emulsions provide a significant chemical stabilization of vitamin C against its degradation. Emulsions were characterized by X-ray diffraction, polarized optical microscopy, and transmission electron microscopy. The stability of vitamin C in the formulations was evaluated upon storage in different conditions of temperature. The emulsions contain a complex colloidal structure, consisting of lamellar liquid crystalline (Lα) and crystalline lamellar gel (Lß) phases, that provide a very efficient protection of vitamin C against its degradation.


Assuntos
Cosméticos , Cristais Líquidos , Ácido Ascórbico , Emulsões , Absorção Cutânea
8.
Langmuir ; 36(45): 13545-13554, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33147976

RESUMO

Fluorination of the TiO2 surface has been often reported as a tool to increase the photocatalytic efficiency due to the beneficial effects in terms of production of oxidizing radicals. Moreover, it is shown that the unique amphiphilic properties of the fluorinated TiO2 (TiO2-F) surface allow one to use this material as a stabilizer for the formulation of Pickering emulsions of poorly soluble pollutants such as nitrobenzene (NB) in water. The emulsions have been characterized in terms of size of the droplets, type of emulsion, possibility of phase inversion, contact angle measurements, and optical microscopy. The emulsified system presents micrometer-sized droplets of pollutant surrounded by the TiO2-F photocatalyst. Consequently, the system can be considered to be composed of microreactors for the degradation of the pollutant, which maximize the contact area between the photocatalyst and substrate. The enhanced photocatalytic activity of TiO2-F was confirmed in the present paper as the apparent rate constants of NB photodegradation were 16 × 10-3 and 12 × 10-3 min-1 for fluorinated and bare TiO2, respectively. At NB concentrations largely exceeding its solubility, the rate constant was 0.04 × 10-3 min-1 in the presence of both TiO2 and TiO2-F. However, unlike TiO2, TiO2-F stabilized NB/water emulsions and, under these conditions, the efficiency of NB photocatalytic degradation in the emulsified system was ca. 18 times higher than in the nonemulsified one. This result is relevant also in terms of practical applications because it opens the route to one-pot treatments of biphasic polluted streams without the need of preliminary physical separation treatments.

9.
Int J Pharm ; 591: 119991, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33091552

RESUMO

Skin constitutes a barrier protecting the organism against physical and chemical factors. Therefore, it is constantly exposed to the xenobiotics, including inorganic ions that are ubiquitous in the environment. Some of them play important roles in homeostasis and regulatory functions of the body, also in the skin, while others can be considered dangerous. Many authors have shown that inorganic ions could penetrate inside the skin and possibly induce local effects. In this review, we give an account of the current knowledge on the effects of skin exposure to inorganic ions. Beneficial effects on skin conditions related to the use of thermal spring waters are discussed together with the application of aluminium in underarm hygiene products and silver salts in treatment of difficult wounds. Finally, the potential consequences of dermal exposure to topical sensitizers and harmful heavy ions including radionuclides are discussed.


Assuntos
Absorção Cutânea , Pele , Íons/metabolismo , Prata/metabolismo , Pele/metabolismo
10.
Biomater Sci ; 8(20): 5715-5728, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32935704

RESUMO

Suspensions of iodinated polymer nanoparticles are evaluated as contrast agent for Computed Tomography (CT) and Spectral Photon Counting Computed Tomography (SPCCT). Iodine containing moieties are grafted to poly(vinyl alcohol) by means of a covalent ester bond up to high degree of substitution of 0.77 providing high iodine content of 71 wt%. Polymer nanoparticles of 150 nm diameter stabilized by the block copolymer poly(caprolactone)-b-poly(ethylene glycol) are highly stable in water and human serum. High coverage of nanoparticles by PEG chains in a dense brush conformation (0.30 molecules·nm-2) provides resistance against fast elimination by mononuclear phagocytes system. Iodine concentration is increased up to 100 mg(i)·mL-1 by a centrifugation/redispersion step, which sets radiopacity of the contrast agent in the right range for imaging cardiovascular system and biodistribution. SPCCT 'Material Decomposition' and 'K-edge reconstruction' methods allow accurate quantification of iodine, as well as specific discrimination of iodine and gadolinium in mixed phantom samples. Intravenous injection of iodinated polymer nanoparticles to rats provides a clear visualization of the cardiovascular system over several hours followed by progressive accumulation in liver and spleen. This material is a 'blood pool' contrast agent with very long residence time in the blood stream.


Assuntos
Meios de Contraste , Nanopartículas , Animais , Polímeros , Ratos , Distribuição Tecidual , Tomografia Computadorizada por Raios X
11.
Nanotheranostics ; 4(3): 129-141, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32483519

RESUMO

Rationale & aim: Various types of cell therapies are currently under investigation for the treatment of ischemic stroke patients. To bridge the gap between cell administration and therapeutic outcome, there is a need for non-invasive monitoring of these innovative therapeutic approaches. Spectral photon counting computed tomography (SPCCT) is a new imaging modality that may be suitable for cell tracking. SPCCT is the next generation of clinical CT that allows the selective visualization and quantification of multiple contrast agents. The aims of this study are: (i) to demonstrate the feasibility of using SPCCT to longitudinally monitor and quantify therapeutic cells, i.e. bone marrow-derived M2-polarized macrophages transplanted in rats with brain damage; and (ii) to evaluate the potential of this approach to discriminate M2-polarized macrophages from their encapsulating scaffold. Methods: Twenty one rats received an intralesional transplantation of bone marrow-derived M2-polarized macrophages. In the first set of experiments, cells were labeled with gold nanoparticles and tracked for up to two weeks post-injection in a monocolor study via gold K-edge imaging. In the second set of experiments, the same protocol was repeated for a bicolor study, in which the labeled cells are embedded in iodine nanoparticle-labeled scaffold. The amount of gold in the brain was longitudinally quantified using gold K-edge images reconstructed from SPCCT acquisition. Animals were sacrificed at different time points post-injection, and ICP-OES was used to validate the accuracy of gold quantification from SPCCT imaging. Results: The feasibility of therapeutic cell tracking was successfully demonstrated in brain-damaged rats with SPCCT imaging. The imaging modality enabled cell monitoring for up to 2 weeks post-injection, in a specific and quantitative manner. Differentiation of labeled cells and their embedding scaffold was also feasible with SPCCT imaging, with a detection limit as low as 5,000 cells in a voxel of 250 × 250 × 250 µm in dimension in vivo. Conclusion: Multicolor SPCCT is an innovative translational imaging tool that allows monitoring and quantification of therapeutic cells and their encapsulating scaffold transplanted in the damaged rat brain.


Assuntos
Lesões Encefálicas , Encéfalo , Nanopartículas Metálicas/química , Tomografia Computadorizada por Raios X/métodos , Animais , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Rastreamento de Células , Estudos de Viabilidade , Masculino , Fótons , Ratos , Ratos Sprague-Dawley
12.
Int J Pharm ; 568: 118526, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31323370

RESUMO

Nanoparticles of polymeric complexes made of hyaluronic acid and polyarginine were investigated for the encapsulation of the cationic hydrophilic drug pentamidine isethionate. The interaction between the anionic hyaluronic acid and the cationic pentamidine resulting in the formation of polyelectrolyte complexes was firstly studied. Then, nanoparticles made of hyaluronic acid and polyarginine loaded with pentamidine were developed. These drug delivery systems consist of a monodisperse population of negatively charged pentamidine-loaded nanoparticles with a high drug encapsulation rate (80%). Such high encapsulation efficiency coming from ion exchange was confirmed by measurements of the counterion isethionate released from pentamidine during nanoparticles formation. Besides, freeze-dried pentamidine-loaded nanoparticles kept their integrity after their reconstitution in water. In vitro studies on human lung (A549) and breast (MDA-MB-231) cancer cell lines showed that pentamidine-loaded nanoparticles were more cytotoxic in comparison to the free drug, suggesting an enhanced internalization of encapsulated drug by cancer cells.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Ácido Hialurônico/administração & dosagem , Nanopartículas/administração & dosagem , Pentamidina/administração & dosagem , Peptídeos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Liofilização , Humanos , Ácido Hialurônico/química , Nanopartículas/química , Pentamidina/química , Peptídeos/química , Solubilidade
13.
Langmuir ; 35(6): 2129-2136, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30657325

RESUMO

Pickering emulsions provide a new way to enhance the efficiency of photocatalytic degradation of water-insoluble pollutants. Indeed, the semiconductor solid particles dually act as the photocatalyst and stabilizer of the emulsion droplets whose size dramatically affects the photocatalytic reaction. The present work aims at the validation of this concept by using bare TiO2 without any surface modification. Nanostructured TiO2 has been prepared by a simple sol-gel process and characterized by X-ray diffraction, specific surface area analysis, scanning electron microscopy, and diffuse reflectance spectroscopy. The emulsions were prepared by using 1-methylnaphthalene (1-MN) as a model organic contaminant scarcely soluble in water and bare TiO2 as the photocatalyst/stabilizer. The emulsions have been characterized by electrical conductivity, optical microscopy, and light-scattering analyses. The photocatalytic degradation of 1-MN was 50 times faster in stable Pickering emulsions with respect to the case of biphasic liquid systems containing TiO2. This finding allows us to propose Pickering emulsions stabilized by TiO2 nanoparticles as an effective and novel way to intensify the photocatalytic degradation of water-insoluble organic pollutants.

14.
Int J Pharm ; 550(1-2): 170-179, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30118832

RESUMO

Clinical use of calcitriol (1,25-dihydroxyvitamin D3) as an anticancer agent is currently limited by the requirement of supraphysiological doses and associated hypercalcemia. Nanoencapsulation of calcitriol is a strategy to overcome these drawbacks, allowing reduced administrated doses and/or frequency, while retaining the therapeutic activity towards cancer cells. For this purpose, we investigated the impact of calcitriol encapsulation on its antiproliferative activity and optimized formulation parameters with that respect. Calcitriol-loaded polymeric nanoparticles with different polymer:oil ratios were prepared by the nanoprecipitation method. Nanoparticles had similar mean size (200 nm) and EE (85%) whereas their release profile strongly depended on formulation parameters. Antiproliferative and cytotoxic activities of formulated calcitriol were evaluated in vitro using human breast adenocarcinoma cells (MCF-7) and showed that calcitriol-induced cell growth inhibition was closely related to its release kinetics. For the most suitable formulation, a sustained cell growth inhibition was observed over 10 days compared to free form. Advantages of calcitriol encapsulation and the role of formulation parameters on its biological activity in vitro were demonstrated. Selected nanoparticle formulation is a promising calcitriol delivery system ensuring a prolonged anticancer activity that could improve its therapeutic efficiency.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Calcitriol/farmacologia , Portadores de Fármacos , Nanocápsulas , Polímeros , Antineoplásicos/uso terapêutico , Calcitriol/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Nanocápsulas/química
15.
Sensors (Basel) ; 18(2)2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29462870

RESUMO

Polydiacetylene (PDA) inserted in films or in vesicles has received increasing attention due to its property to undergo a blue-to-red colorimetric transition along with a change from non-fluorescent to fluorescent upon application of various stimuli. In this review paper, the principle for the detection of various microorganisms (bacteria, directly detected or detected through the emitted toxins or through their DNA, and viruses) and of antibacterial and antiviral peptides based on these responsive PDA vesicles are detailed. The analytical performances obtained, when vesicles are in suspension or immobilized, are given and compared to those of the responsive vesicles mainly based on the vesicle encapsulation method. Many future challenges are then discussed.


Assuntos
Técnicas Biossensoriais , Colorimetria , Polímero Poliacetilênico , Polímeros , Poli-Inos
16.
Int J Pharm ; 531(1): 134-142, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28802793

RESUMO

Surfactant-free biocompatible and biodegradable Pickering emulsions were investigated as vehicles for skin delivery of hydrophobic drugs. O/w emulsions of medium-chain triglyceride (MCT) oil droplets loaded with all-trans retinol as a model hydrophobic drug were stabilized by block copolymer nanoparticles: either poly(lactide)-block-poly(ethylene glycol) (PLA-b-PEG) or poly(caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG). Those innovative emulsions were prepared using two different processes allowing drug loading either inside oil droplets or inside both oil droplets and non-adsorbed block copolymer nanoparticles. Skin absorption of retinol was investigated in vitro on pig skin biopsies using the Franz cell method. Supplementary experiments by confocal fluorescence microscopy allowed the visualization of skin absorption of the Nile Red dye on histological sections. Retinol and Nile Red absorption experiments showed the large accumulation of hydrophobic drugs in the stratum corneum for the Pickering emulsions compared to the surfactant-based emulsion and an oil solution. Loading drug inside both oil droplets and block copolymer nanoparticles enhanced again skin absorption of drugs, which was ascribed to the supplementary contribution of free block copolymer nanoparticles loaded with drug. Such effect allowed tuning drug delivery to skin over a wide range by means of a suitable selection of either the formulation or the drug loading process.


Assuntos
Portadores de Fármacos/química , Emulsões/química , Absorção Cutânea , Animais , Etilenoglicóis , Lactatos , Micelas , Poliésteres , Polietilenoglicóis , Suínos
17.
Soft Matter ; 12(36): 7564-76, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27510805

RESUMO

The stabilization of o/w Pickering emulsions in cases of weak adsorption of solid particles at the surface of oil droplets is addressed. Though the adsorption is usually very strong and irreversible when partial wetting conditions are fulfilled, electrostatic repulsions between charged solid particles act against the adsorption. The regime of weak adsorption was reached using charged silica nanoparticles at high pH and low ionic strength. O/w Pickering emulsions of the diisopropyl adipate oil were stabilized by colloidal nanoparticles of Ludox® AS40 consisting of non-aggregated particles of bare silica (hydrophilic). The combination of stability assessment, droplet size and electrokinetic potential measurements at various pH values, adsorption isotherms and cryo-SEM observations of the adsorbed layers disclosed the specificities of the stabilization of Pickering emulsions by adsorption of solid nanoparticles against strong electrostatic repulsions. Not only the long-term stability of emulsions was poor under strong electrostatic repulsions at high pH, but emulsification failed since full dispersion of oil could not be achieved. Emulsion stability was ensured by decreasing electrostatic repulsions by lowering the pH from 9 to 3. Stable emulsions were stabilized by a monolayer of silica particles at 54% coverage of the oil droplet surface at low silica content and an adsorption regime as multilayers was reached at higher concentrations of silica although there was no aggregation of silica in the bulk aqueous phase.

18.
Langmuir ; 32(24): 6046-57, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27249669

RESUMO

Clay-armored polymer particles were prepared by emulsion polymerization in the presence of Laponite platelets that adsorb at the surface of latex particles and act as stabilizers during the course of the polymerization. While Laponite RDS clay platelets are most often used, the choice of the type of clay still remains an open issue that is addressed in the present article. Four different grades of Laponite were investigated as stabilizers in the emulsion polymerization of styrene. First, the adsorption isotherms of the clays, on preformed polystyrene particles, were determined by ICP-AES analysis of the residual clay in the aqueous phase. Adsorption of clay depended on the type of clay at low concentrations corresponding to adsorption as a monolayer. Adsorption of clay particles as multilayers was observed for all the grades above a certain concentration under the considered ionic strength (mainly due to the initiator ionic species). The stabilization efficiency of these clays was investigated during the polymerization reaction (free of any other stabilizer). The clays did not have the same effect on stabilization, which was related to differences in their compositions and in their adsorption isotherms. The different grades led to different polymer particles sizes and therefore to different polymerization reaction rates. Laponite RDS and S482 gave similar results, ensuring the best stabilization efficiency and the fastest reaction rate; the number of particles increased as the clay concentration increased. Stabilization with Laponite XLS gave the same particles size and number as the latter two clays at low clay concentrations, but it reached an upper limit in the number of nucleated polymer particles at higher concentrations indicating a decrease of stabilization efficiency at high concentrations. Laponite JS did not ensure a sufficient stability of the polymer particles, as the polymerization results were comparable to a stabilizer-free polymerization system.

19.
Pharm Res ; 33(7): 1564-75, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27015843

RESUMO

PURPOSE: Measurement of skin absorption of ions requires specific experimental protocols regarding the use of pig skin as a model, the viability of excised skin in water medium over 24 h, the presence of endogenous ions, and evaluation of the contributions of facilitated transport through ion channels and ion transporters. METHOD: Absorption experiments of halide anions F(-), Cl(-), Br(-) and I(-) in excised skin were performed in Franz diffusion cells. Experiments were performed on human and porcine skin under various conditions so as to define and validate experimental protocols. RESULTS: The distributions of endogenous ions and the absorption kinetics of halide ions were similar in both porcine and human skin models. Fresh skin kept its viability over 24 h in salt-free water, allowing experiments following OECD guidelines. Permeation increased in the order F(-) < Cl(-) < Br(-) < I(-) for all receptor media and skin samples. Absorption was larger in fresh skin due to the transport through chloride channels or exchangers. CONCLUSION: Skin absorption experiments of ions in Franz cells rely on working with fresh excised skin (human or porcine) and pure water as receptor fluid. Experiments with chloride blockers or frozen/thawed skin allow discriminating passive diffusion and facilitated transport.


Assuntos
Ânions/metabolismo , Absorção Cutânea/fisiologia , Pele/metabolismo , Animais , Difusão , Feminino , Humanos , Cinética , Masculino , Suínos , Água/metabolismo
20.
Pharm Res ; 33(7): 1576-86, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27001272

RESUMO

PURPOSE: The purpose of the study was to sort skin penetration of anions with respect to their properties and to assess their mechanisms of penetration. METHODS: Aqueous solutions of halides at two concentrations were prepared and quantitative penetration studies were carried out for 24 h using Franz diffusion cells. The iodide permeation was also measured after blocking of anion channels and transporters to investigate the role of this specific transport. RESULTS: Absorption of halide ions into skin revealed large differences of transport between these anions according to the Hofmeister series. Increasing steady-state fluxes and lag times in the order F(-) < Cl(-) < Br(-) < I(-) were observed in permeation experiments. The steady-state fluxes were proportional to the concentration for each halide ion. Longer lag times for iodide or bromide ions were explained by the ability of such sticky chaotropic anions to interact with apolar lipids especially in the stratum corneum. Inhibiting ion exchangers and channels decreased the flux of iodide ions by 75%, showing the high contribution of the facilitated transport over the passive pathway. CONCLUSION: Ions transport had contributions coming from passive diffusion through the skin layers and transport mediated by ion channels and binding to ion transporters.


Assuntos
Ânions/metabolismo , Absorção Cutânea/fisiologia , Pele/metabolismo , Animais , Difusão , Feminino , Íons/metabolismo , Masculino , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...