Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 9(40): 35279-35286, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28891282

RESUMO

This study developed flexible light-emitting diodes (LEDs) with warm white and neutral white light. A simple ultraviolet flip-chip sticking process was adopted for the pumping source and combined with polymer and quantum dot (QD) films technology to yield white light. The polymer-blended flexible LEDs exhibited higher luminous efficiency than the QD-blended flexible LEDs. Moreover, the polymer-blended LEDs achieved excellent color-rendering index (CRI) values (Ra = 96 and R9 = 96), with high reliability, demonstrating high suitability for special applications like accent, down, or retrofit lights in the future. In places such as a museum, kitchen, or surgery room, its high R9 and high CRI characteristics can provide high-quality services.

2.
Nanotechnology ; 27(42): 425401, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27632684

RESUMO

In this work, we demonstrate homogeneously distributed In0.3Ga0.7N/GaN quantum disks (QDs), with an average diameter below 10 nm and a high density of 2.1 × 10(11) cm(-2), embedded in 20 nm tall nanopillars. The scalable top-down fabrication process involves the use of self-assembled ferritin bio-templates as the etch mask, spin coated on top of a strained In0.3Ga0.7N/GaN single quantum well (SQW) structure, followed by a neutral beam etch (NBE) method. The small dimensions of the iron cores inside ferritin and nearly damage-free process enabled by the NBE jointly contribute to the observation of photoluminescence (PL) from strain-relaxed In0.3Ga0.7N/GaN QDs at 6 K. The large blueshift of the peak wavelength by over 70 nm manifests a strong reduction of the quantum-confined Stark effect (QCSE) within the QD structure, which also agrees well with the theoretical prediction using a 3D Schrödinger equation solver. The current results hence pave the way towards the realization of large-scale III-N quantum structures using the combination of bio-templates and NBE, which is vital for the development of next-generation lighting and communication devices.

3.
Opt Express ; 24(2): A414-23, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26832593

RESUMO

In this work, we investigate blade-coated organic interlayers at the rear surface of hybrid organic-silicon photovoltaics based on two small molecules: Tris(8-hydroxyquinolinato) aluminium (Alq(3)) and 1,3-bis(2-(4-tert-butylphenyl)-1,3,4-oxadiazol-5-yl) benzene (OXD-7). In particular, soluble Alq(3) resulting in a uniform thin film with a root-mean-square roughness < 0.2nm is demonstrated for the first time. Both devices with the Alq(3) and OXD-7 interlayers show notable enhancement in the open-circuit voltage and fill-factor, leading to a net efficiency increase by over 2% from the reference, up to 11.8% and 12.5% respectively. The capacitance-voltage characteristics confirm the role of the small-molecule interlayers resembling a thin interfacial oxide layer for the Al-Si Schottky barrier to enhance the built-in potential and facilitate charge transport. Moreover, the Alq(3) interlayer in optimized devices exhibits isolated phases with a large surface roughness, in contrast to the OXD-7 which forms a continuous uniform thin film. The distinct morphological differences between the two interlayers further suggest different enhancement mechanisms and hence offer versatile functionalities to the advent of hybrid organic-silicon photovoltaics.

4.
Opt Express ; 23(11): 14344-50, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26072798

RESUMO

The photodesorption kinetics of graphene with various UV laser power is studied by conductance response. Analytical expressions of the power-dependent photodesorption kinetics of graphene in ambience are derived. The photodesorption time constant τd, steady current, and magnitude of modulation current, can be expressed as functions of the adsorption time constant τa, desorption cross section σ, and photon flux density. Under illumination the steady occupation ratio of adsorbed O2 on graphene is equal to τd/τa. It is suggested that the photodesorption of O2 on graphene is attributed the injection of photogenerated hot electrons and is restricted by the density of antibonding states of O2.

5.
Opt Express ; 23(7): A204-10, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25968786

RESUMO

The hybrid white light-emitting didoes (LED) with polyfluoren (PFO) polymer and quantum dot (QD) was investigated using dispensing method at the different correlated color temperature (CCT) for cool and warm color temperature. This result indicates that the hybrid white LED device has the higher luminous efficiency than the convention one, which could be attributed to the increased utilization rate of the UV light. Furthermore, the CIE 1931 coordinate of high quality white hybrid LED with different CCT range from 3000K to 9000K is demonstrated. Consequently, the angular-dependent CCT and the thermal issue of the hybrid white LED device were also analyzed in this study.

6.
Opt Express ; 23(3): A106-17, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836236

RESUMO

Metallic back reflectors has been used for thin-film and wafer-based solar cells for very long time. Nonetheless, the metallic mirrors might not be the best choices for photovoltaics. In this work, we show that solar cells with all-dielectric reflectors can surpass the best-configured metal-backed devices. Theoretical and experimental results all show that superior large-angle light scattering capability can be achieved by the diffuse medium reflectors, and the solar cell J-V enhancement is higher for solar cells using all-dielectric reflectors. Specifically, the measured diffused scattering efficiency (D.S.E.) of a diffuse medium reflector is >0.8 for the light trapping spectral range (600nm-1000nm), and the measured reflectance of a diffuse medium can be as high as silver if the geometry of embedded titanium oxide(TiO(2)) nanoparticles is optimized. Moreover, the diffuse medium reflectors have the additional advantage of room-temperature processing, low cost, and very high throughput. We believe that using all-dielectric solar cell reflectors is a way to approach the thermodynamic conversion limit by completely excluding metallic dissipation.

7.
Nanoscale Res Lett ; 9(1): 505, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25258616

RESUMO

The flip chip ultraviolet light-emitting diodes (FC UV-LEDs) with a wavelength of 365 nm are developed with the ex situ reactive plasma deposited (RPD) AlN nucleation layer on patterned sapphire substrate (PSS) by an atmospheric pressure metal-organic chemical vapor deposition (AP MOCVD). The ex situ RPD AlN nucleation layer can significantly reduce dislocation density and thus improve the crystal quality of the GaN epitaxial layers. Utilizing high-resolution X-ray diffraction, the full width at half maximum of the rocking curve shows that the crystalline quality of the epitaxial layer with the (RPD) AlN nucleation layer is better than that with the low-temperature GaN (LT-GaN) nucleation layer. The threading dislocation density (TDD) is estimated by transmission electron microscopy (TEM), which shows the reduction from 6.8 × 10(7) cm(-2) to 2.6 × 10(7) cm(-2). Furthermore, the light output power (LOP) of the LEDs with the RPD AlN nucleation layer has been improved up to 30 % at a forward current of 350 mA compared to that of the LEDs grown on PSS with conventional LT-GaN nucleation layer.

8.
Opt Express ; 22 Suppl 2: A396-401, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24922249

RESUMO

We have demonstrated a gallium nitride (GaN)-based green light-emitting diode (LED) with graphene/indium tin oxide (ITO) transparent contact. The ohmic characteristic of the p-GaN and graphene/ITO contact could be preformed by annealing at 500 °C for 5 min. The specific contact resistance of p-GaN/graphene/ITO (3.72E-3 Ω·cm²) is one order less than that of p-GaN/ITO. In addition, the 20-mA forward voltage of LEDs with graphene/ITO transparent (3.05 V) is 0.09 V lower than that of ITO LEDs (3.14 V). Besides, We have got an output power enhancement of 11% on LEDs with graphene/ITO transparent contact.

9.
Opt Express ; 22(4): 4516-22, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24663772

RESUMO

Micro-patterned PDMS film was fabricated and combined with LED chip on board (COB) package to improve the emission uniformity of LED chip. The micro scale patterned sapphire substrate (PSS) was used as a mold to fabricate micro-cone patterned PDMS (MC-PDMS) film. A strong scattering effect from this MC-PDMS film can be verified by the high haze ratio and the Bi-directional Transmission effect. The angle dependent color temperature measurement system was used to measure the ΔCCT of COB with and without MC-PDMS. The measurement results indicate that the ΔCCT was reduced from 1025K to 428K. This improvement can effectively eliminate the yellow ring effect of LED chip. This technology can be thus considered as a cost-effective way for the next generation of light source packages.

10.
J Nanosci Nanotechnol ; 8(1): 99-110, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18468056

RESUMO

A brief review is given of recent developments in wide bandgap semiconductor nanowire synthesis and devices fabricated on these nanostructures. There is strong interest in these devices for applications in UV detection, gas sensors and transparent electronics.

11.
Appl Opt ; 45(11): 2396-8, 2006 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-16623234

RESUMO

A prototype of a GaN-based stacked micro-optics system is demonstrated. The system consists of a GaN microlens, GaN membrane gratings, six spacers, a spatial filter, and a 980 nm VCSEL. The laser beam is collimated by the GaN microlens and diffracted by the GaN membrane grating. The systems can be used in blue-violet-UV micro-optics systems.

12.
Opt Lett ; 28(14): 1260-2, 2003 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12885040

RESUMO

A silicon nitride (SiNx) membrane diffractive optical element (DOE) designed to exhibit beam-splitting and focusing behavior at visible wavelengths has been fabricated and tested. Since the fabrication process is based on silicon micromachining technology, the DOE is easily integrated with a laser diode chip and a photodiode chip on a silicon substrate to function as the hologram-laser-photodiode unit for use in the pickup head of a CD or DVD system. The SiNx film is deposited with low-pressure chemical-vapor deposition and the free-standing membrane is formed by KOH etching. The transmissive DOE showed a high diffraction efficiency (>20% for a binary-phase-level element). The experimental evaluation was in good agreement with the designed and modeled predictions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA