Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Sci Rep ; 11(1): 1948, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479367


Electrocardiogram (ECG)-based intelligent screening for systolic heart failure (HF) is an emerging method that could become a low-cost and rapid screening tool for early diagnosis of the disease before the comprehensive echocardiographic procedure. We collected 12-lead ECG signals from 900 systolic HF patients (ejection fraction, EF < 50%) and 900 individuals with normal EF in the absence of HF symptoms. The 12-lead ECG signals were converted by continuous wavelet transform (CWT) to 2D spectra and classified using a 2D convolutional neural network (CNN). The 2D CWT spectra of 12-lead ECG signals were trained separately in 12 identical 2D-CNN models. The 12-lead classification results of the 2D-CNN model revealed that Lead V6 had the highest accuracy (0.93), sensitivity (0.97), specificity (0.89), and f1 scores (0.94) in the testing dataset. We designed four comprehensive scoring methods to integrate the 12-lead classification results into a key diagnostic index. The highest quality result among these four methods was obtained when Leads V5 and V6 of the 12-lead ECG signals were combined. Our new 12-lead ECG signal-based intelligent screening method using straightforward combination of ECG leads provides a fast and accurate approach for pre-screening for systolic HF.

Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2614-2617, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018542


The main goal of this research is to evaluate the defibrillation efficacy with the high-frequency waveform on ventricular fibrillation in small animals. A biphasic defibrillator with adjustable frequency was designed for this study. This custom-designed defibrillator can be adjusted to generate four different frequencies of 125, 250, 500, and 1000 Hz. Six rat hearts were induced VT/VF by electrical induction using the waveform of these four frequencies. Success VT/VF-induction by applying those four frequencies were recorded and observed by optical mapping. The results showed that the VT/VF-induction success rate is increasing along with higher frequencies. The VT/VF-induction success rate is 16% in 125Hz and 250 Hz, 33% in 500 Hz, and 100% in 1000 Hz with S1-S2 protocol at 100 ms coupling interval. Also, using optical mapping technique, shock-induced optical potential showed that only high-frequency waveform exhibited the largest tissue responses in the middle position of the heart. In conclusion, high-frequency (1000Hz) defibrillation waveform has the highest defibrillation efficacy comparing to other lower frequencies used in this study.

Coração , Fibrilação Ventricular , Animais , Desfibriladores , Eletricidade , Masculino , Ratos , Registros , Fibrilação Ventricular/terapia
PLoS One ; 15(5): e0232529, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32357163


Electrical defibrillation is a well-established treatment for cardiac dysrhythmias. Studies have suggested that shock-induced spatial sawtooth patterns and virtual electrodes are responsible for defibrillation efficacy. We hypothesize that high-frequency shocks enhance defibrillation efficacy by generating temporal sawtooth patterns and using rapid virtual electrodes synchronized with shock frequency. High-speed optical mapping was performed on isolated rat hearts at 2000 frames/s. Two defibrillation electrodes were placed on opposite sides of the ventricles. An S1-S2 pacing protocol was used to induce ventricular tachyarrhythmia (VTA). High-frequency shocks of equal energy but varying frequencies of 125-1000 Hz were used to evaluate VTA vulnerability and defibrillation success rate. The 1000-Hz shock had the highest VTA induction rate in the shorter S1-S2 intervals (50 and 100 ms) and the highest VTA defibrillation rate (70%) among all frequencies. Temporal sawtooth patterns and synchronous shock-induced virtual electrode responses could be observed with frequencies of up to 1000 Hz. The improved defibrillation outcome with high-frequency shocks suggests a lower energy requirement than that of low-frequency shocks for successful ventricular defibrillation.

Cardioversão Elétrica/métodos , Taquicardia Ventricular/terapia , Fibrilação Ventricular/terapia , Animais , Modelos Animais de Doenças , Eletrodos , Fenômenos Eletrofisiológicos , Feminino , Ventrículos do Coração/fisiopatologia , Técnicas In Vitro , Modelos Cardiovasculares , Ratos , Ratos Sprague-Dawley , Taquicardia Ventricular/fisiopatologia , Interface Usuário-Computador , Fibrilação Ventricular/fisiopatologia , Função Ventricular , Imagens com Corantes Sensíveis à Voltagem/instrumentação , Imagens com Corantes Sensíveis à Voltagem/métodos