Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 504
Filtrar
1.
Vet Sci ; 8(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34679060

RESUMO

Cardiac arrest (CA) causes severe spinal cord injury and evokes spinal cord disorders including paraplegia. It has been reported that risperidone, an antipsychotic drug, effectively protects neuronal cell death from transient ischemia injury in gerbil brains. However, until now, studies on the effects of risperidone on spinal cord injury after asphyxial CA (ACA) and cardiopulmonary resuscitation (CPR) are not sufficient. Therefore, this study investigated the effect of risperidone on hind limb motor deficits and neuronal damage/death in the lumbar part of the spinal cord following ACA in rats. Mortality, severe motor deficits in the hind limbs, and the damage/death (loss) of motor neurons located in the anterior horn were observed two days after ACA/CPR. These symptoms were significantly alleviated by risperidone (an atypical antipsychotic) treatment after ACA. In vehicle-treated rats, the immunoreactivities of tumor necrosis factor-alpha (TNF-α) and interleukin 1-beta (IL-1ß), as pro-inflammatory cytokines, were increased, and the immunoreactivities of IL-4 and IL-13, as anti-inflammatory cytokines, were reduced with time after ACA/CPR. In contrast, in risperidone-treated rats, the immunoreactivity of the pro-inflammatory cytokines was significantly decreased, and the anti-inflammatory cytokines were enhanced compared to vehicle-treated rats. In brief, risperidone treatment after ACA/CPR in rats significantly improved the survival rate and attenuated paralysis, the damage/death (loss) of motor neurons, and inflammation in the lumbar anterior horn. Thus, risperidone might be a therapeutic agent for paraplegia by attenuation of the damage/death (loss) of spinal motor neurons and neuroinflammation after ACA/CPR.

2.
Exp Ther Med ; 22(6): 1395, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34650643

RESUMO

Thioredoxin 1 (Trx1) serves a central role in redox homeostasis. It is involved in numerous other processes, including oxidative stress and apoptosis. However, to the best of our knowledge, the role of Trx1 in inflammation remains to be explored. The present study investigated the function and mechanism of cell permeable fused Tat-Trx1 protein in macrophages and a mouse model. Transduction levels of Tat-Trx1 were determined via western blotting. Cellular distribution of transduced Tat-Trx1 was determined by fluorescence microscopy. 2',7'-Dichlorofluorescein diacetate and TUNEL staining were performed to determine the production of reactive oxygen species and DNA fragmentation. Protein and gene expression were measured by western blotting and reverse transcription-quantitative PCR (RT-qPCR), respectively. Effects of skin inflammation were determined using hematoxylin and eosin staining, changes in ear weight and ear thickness, and RT-qPCR in ear edema animal models. Transduced Tat-Trx1 inhibited lipopolysaccharide-induced cytotoxicity and activation of NF-κB, MAPK and Akt. Additionally, Tat-Trx1 markedly reduced the production of inducible nitric oxide synthase, cyclooxygenase-2, IL-1ß, IL-6 and TNF-α in macrophages. In a 12-O-tetradecanoylphorbol-13-acetate-induced mouse model, Tat-Trx1 reduced inflammatory damage by inhibiting inflammatory mediator and cytokine production. Collectively, these results demonstrated that Tat-Trx1 could exert anti-inflammatory effects by inhibiting the production of pro-inflammatory mediators and cytokines and by modulating MAPK signaling. Therefore, Tat-Trx1 may be a useful therapeutic agent for diseases induced by inflammatory damage.

3.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681736

RESUMO

Levels of O-GlcNAc transferase (OGT) and hyper-O-GlcNAcylation expression levels are associated with cancer pathogenesis. This study aimed to find conditions that maximize the therapeutic effect of cancer and minimize tissue damage by combining an OGT inhibitor (OSMI-1) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). We found that OSMI-1 treatment in HCT116 human colon cancer cells has a potent synergistic effect on TRAIL-induced apoptosis signaling. Interestingly, OSMI-1 significantly increased TRAIL-mediated apoptosis by increasing the expression of the cell surface receptor DR5. ROS-induced endoplasmic reticulum (ER) stress by OSMI-1 not only upregulated CHOP-DR5 signaling but also activated Jun-N-terminal kinase (JNK), resulting in a decrease in Bcl2 and the release of cytochrome c from mitochondria. TRAIL induced the activation of NF-κB and played a role in resistance as an antiapoptotic factor. During this process, O-GlcNAcylation of IκB kinase (IKK) and IκBα degradation occurred, followed by translocation of p65 into the nucleus. However, combination treatment with OSMI-1 counteracted the effect of TRAIL-mediated NF-κB signaling, resulting in a more synergistic effect on apoptosis. Therefore, the combined treatment of OSMI-1 and TRAIL synergistically increased TRAIL-induced apoptosis through caspase-8 activation. Conclusively, OSMI-1 potentially sensitizes TRAIL-induced cell death in HCT116 cells through the blockade of NF-κB signaling and activation of apoptosis through ER stress response.

4.
Plants (Basel) ; 10(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34579347

RESUMO

We investigated the effects of Cissus verticillata leaf extract (CVE) on a high-fat diet (HFD)-induced obesity and memory deficits. Male mice (5 weeks of age) were fed vehicle (distilled water), or 30, 100, or 300 mg/kg of CVE once a day for 8 weeks with an HFD. Treatment with CVE resulted in lower body weight and glucose levels in a concentration- and feeding time-dependent manner. LDL cholesterol and triglyceride levels were significantly lower in the CVE-treated HFD group than in the vehicle-treated HFD group. In contrast, high-density lipoprotein cholesterol levels did not show any significant changes. Lipid droplets and ballooning were reduced depending on the concentration of CVE treatment compared to the HFD group. Treatment with CVE ameliorated the increase in glucagon and immunoreactivities in the pancreas, and novel object recognition memory was improved by 300 mg/kg CVE treatment compared to the HFD group. More proliferating cells and differentiated neuroblasts were higher in mice treated with CVE than in vehicle-treated HFD-fed mice. Brain-derived neurotrophic factor (BDNF) levels were significantly decreased in the HFD group, which was facilitated by treatment with 300 mg/kg CVE in hippocampal homogenates. These results suggest that CVE ameliorates HFD-induced obesity and memory deficits in mice, associated with increased BDNF levels in the hippocampus.

5.
Molecules ; 26(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34576901

RESUMO

Transient ischemia in brains causes neuronal damage, gliosis, and blood-brain barrier (BBB) breakdown, which is related to ischemia-induced brain dysfunction. Populus species have various pharmacological properties including antioxidant and anti-inflammatory activities. In this study, we found that phenolic compounds were rich in Populus tomentiglandulosa extract and examined the effects of Populus tomentiglandulosa extract on neuronal damage/death, astrogliosis, and BBB breakdown in the striatum, which is related to motor behavior, following 15-min transient ischemia in the forebrain in gerbils. The gerbils were pre-treated with 50, 100, and 200 mg/kg of the extract. The latter showed significant effects against ischemia-reperfusion injury. Ischemia-induced hyperactivity using spontaneous motor activity test was significantly attenuated by the treatment. Striatal cells (neurons) were dead at five days after the ischemia; however, pre-treatment with the extract protected the striatal cells from ischemia/reperfusion injury. Ischemia-induced reactive astrogliosis was significantly alleviated, in particular, astrocyte end feet, which are a component of BBB, were significantly preserved. Immunoglobulin G, which is not found in intact brain parenchyma, was apparently shown (an indicator of extravasation) in striatal parenchyma at five days after the ischemia, but IgG leakage was dramatically attenuated in the parenchyma by the pre-treatment. Based on these findings, we suggest that Populus tomentiglandulosa extract rich in phenolic compounds can be employed as a pharmaceutical composition to develop a preventive material against brain ischemic injury.


Assuntos
Astrócitos , Barreira Hematoencefálica , Gerbillinae , Polifenóis , Populus , Animais , Morte Celular/efeitos dos fármacos , Hipocampo/metabolismo , Neurônios/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico
6.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575983

RESUMO

Hypoxia-inducible factor-1 alpha (HIF-1α) is overexpressed in cancer, leading to a poor prognosis in patients. Diverse cellular factors are able to regulate HIF-1α expression in hypoxia and even in non-hypoxic conditions, affecting its progression and malignant characteristics by regulating the expression of the HIF-1α target genes that are involved in cell survival, angiogenesis, metabolism, therapeutic resistance, et cetera. Numerous studies have exhibited the anti-cancer effect of HIF-1α inhibition itself and the augmentation of anti-cancer treatment efficacy by interfering with HIF-1α-mediated signaling. The anti-cancer effect of plant-derived phytochemicals has been evaluated, and they have been found to possess significant therapeutic potentials against numerous cancer types. A better understanding of phytochemicals is indispensable for establishing advanced strategies for cancer therapy. This article reviews the anti-cancer effect of phytochemicals in connection with HIF-1α regulation.


Assuntos
Anticarcinógenos/uso terapêutico , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/genética , Hipóxia Tumoral/genética
7.
Biology (Basel) ; 10(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34439951

RESUMO

Inadequate activation of cell cycle proteins including cyclin D1 and cdk4 is involved in neuronal cell death induced by diverse pathological stresses, including transient global brain ischemia. The neuroprotective effect of ischemic preconditioning is well-established, but the underlying mechanism is still unknown. In this study, we examined changes in cyclin D1, cdk4, and related molecules in cells or neurons located in Cornu Ammonis 1 (CA1) of gerbil hippocampus after transient ischemia for 5 min (ischemia and reperfusion) and investigated the effects of IPC on these molecules after ischemia. Four groups were used in this study as follows: sham group, ischemia group, IPC plus (+) sham group, and IPC+ischemia group. IPC was developed by inducing 2-min ischemia at 24 h before 5-min ischemia (real ischemia). Most pyramidal cells located in CA1 of the ischemia group died five days after ischemia. CA1 pyramidal cells in the IPC+ischemia group were protected. In the ischemia group, the expressions of cyclin D1, cdk4, phosphorylated retinoblastoma (p-Rb), and E2F1 (a transcription factor regulated by p-Rb) were significantly altered in the pyramidal cells with time after ischemia; in the IPC+ischemia group, they were controlled at the level shown in the sham group. In particular, the expression of p16INK4a (an endogenous cdk inhibitor) in the ischemia group was reversely altered in the pyramidal cells; in the IPC+TI group, the expression of p16INK4a was not different from that shown in the sham group. Our current results indicate that cyclin D1/cdk4-related signals may have important roles in events in neurons related to damage/death following ischemia and reperfusion. In particular, the preservation of p16INK4a by IPC may be crucial in attenuating neuronal death/damage or protecting neurons after brain ischemic insults.

8.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361744

RESUMO

Korean red pine (Pinus densiflora) belongs to the Genus Pinus, and its bark contains a great amount of naturally occurring phenolic compounds. Until now, few studies have been conducted to assess the neuroprotective effects of Pinus densiflora bark extract against brain ischemic injury. The aim of this study was to investigate the neuroprotective effects of pre-treatment with the extract in the hippocampus following 5-min transient forebrain ischemia in gerbils. Furthermore, this study examined the anti-inflammatory effect as a neuroprotective mechanism of the extract. Pinus densiflora bark was extracted by pure water (100 °C), and this extract was quantitatively analyzed and contained abundant polyphenols, flavonoids, and proanthocyanidins. The extract (25, 50, and 100 mg/kg) was orally administered once a day for seven days before the ischemia. In the gerbil hippocampus, death of the pyramidal neurons was found in the subfield cornu ammonis 1 (CA1) five days after the ischemia. This death was significantly attenuated by pre-treatment with 100 mg/kg, not 25 or 50 mg/kg, of the extract. The treatment with 100 mg/kg of the extract markedly inhibited the activation of microglia (microgliosis) and significantly decreased the expression of pro-inflammatory cytokines (interleukin 1ß and tumor necrosis factor α). In addition, the treatment significantly increased anti-inflammatory cytokines (interleukin 4 and interleukin 13). Taken together, this study clearly indicates that pre-treatment with 100 mg/kg of Pinus densiflora bark extract in gerbils can exert neuroprotection against brain ischemic injury by the attenuation of neuroinflammatory responses.


Assuntos
Anti-Inflamatórios/farmacologia , Isquemia Encefálica/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Pinus/química , Prosencéfalo/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Flavonoides/química , Flavonoides/farmacologia , Expressão Gênica/efeitos dos fármacos , Gerbillinae , Hipocampo/metabolismo , Hipocampo/patologia , Inflamação , Interleucina-13/agonistas , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-4/agonistas , Interleucina-4/genética , Interleucina-4/metabolismo , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Fármacos Neuroprotetores/química , Casca de Planta/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Proantocianidinas/química , Proantocianidinas/farmacologia , Prosencéfalo/metabolismo , Prosencéfalo/patologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Células Piramidais/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
9.
Neurochem Res ; 46(12): 3123-3134, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34403064

RESUMO

p27Kip1 (p27) regulates the cell cycle by inhibiting G1 progression in cells. Several studies have shown conflicting results on the effects of p27 against cell death in various insults. In the present study, we examined the neuroprotective effects of p27 against H2O2-induced oxidative stress in NSC34 cells and against spinal cord ischemia-induced neuronal damage in rabbits. To promote delivery into NSC34 cells and motor neurons in the spinal cord, Tat-p27 fusion protein and its control protein (Control-p27) were synthesized with or without Tat peptide, respectively. Tat-p27, but not Control-27, was efficiently introduced into NSC34 cells in a concentration- and time-dependent manner, and the protein was detected in the cytoplasm. Tat-p27 showed neuroprotective effects against oxidative stress induced by H2O2 treatment and reduced the formation of reactive oxygen species, DNA fragmentation, and lipid peroxidation in NSC34 cells. Tat-p27, but not Control-p27, ameliorated ischemia-induced neurological deficits and cell damage in the rabbit spinal cord. In addition, Tat-p27 treatment reduced the expression of α-synuclein, activation of microglia, and release of pro-inflammatory cytokines such as interleukin-1ß and tumor necrosis factor-α in the spinal cord. Taken together, these results suggest that Tat-p27 inhibits neuronal damage by decreasing oxidative stress, α-synuclein expression, and inflammatory responses after ischemia.

10.
Assay Drug Dev Technol ; 19(7): 442-452, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34415786

RESUMO

FK506-binding proteins (FKBPs) belong to the immunophilin family and are linked to various disease states, including the inflammatory response. The inhibition of cytokine and chemokine expression in addition to positive effects of FKBPs on corneal inflammation in animal models suggests that they may be used for ophthalmic delivery in the treatment of dry eye disease. To pass the effective barriers protecting eye tissues, testing the transduction domains of FKBPs is essential. However, monitoring their transduction efficiencies is not a simple task. The quantitative measurement of FKBP interactions was performed using a cell model with a specific G protein-coupled receptor, as FKBPs had been known to act at the inositol 1,4,5-trisphosphate receptor (IP3R) leading to the inhibition of intracellular calcium mobilization. Because of its luminescence amplitude and stability, human urotensin II receptor was expressed in aequorin parental cells to measure the action of selected FKBPs. This luminescence-based functional assay platform exhibited a high signal-to-background ratio of more than 100 and a Z' factor at 0.6204. As expected, changes in the sequence of the transduction domain affected the function of the FKBPs. The intracellular calcium mobilization assay with selected FKBPs represented a robust and reliable platform to screen initial candidates. Although the precise nature of the control that FKBPs exert on the IP3R is uncertain, this approach can be used to develop innovative anti-inflammatory treatments for dry eye disease by optimizing protein transduction domain sequences.

11.
BMB Rep ; 54(11): 557-562, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34353430

RESUMO

Microglial activation is closely associated with neuroinflammatory pathologies. The nucleotide-binding and oligomerization domain-like receptor containing a pyrin domain 3 (NLRP3) inflammasomes are highly organized intracellular sensors of neuronal alarm signaling. NLRP3 inflammasomes activate nuclear factor kappa-B (NF-κB) and reactive oxygen species (ROS), which induce inflammatory responses. Moreover, NLRP3 dysfunction is a common feature of chronic inflammatory diseases. The present study investigated the effect of a novel thiazol derivative, N-cyclooctyl-5-methylthiazol-2-amine hydrobromide (KHG26700), on inflammatory responses in lipopolysaccharide (LPS)-treated BV-2 microglial cells. KHG26700 significantly attenuated the expression of several pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1ß, and interleukin-6, in these cells, as well as the LPS-induced increases in NLRP3, NF-κB, and phospho-IkBα levels. KHG26700 also suppressed the LPS-induced increases in protein levels of autophagy protein 5 (ATG5), microtubule- associated protein 1 light chain 3 (LC3), and beclin-1, as well as downregulating the LPS-enhanced levels of ROS, lipid peroxidation, and nitric oxide. These results suggest that the anti-inflammatory effects of KHG26700 may be due, at least in part, to the regulation of the NLRP3-mediated signaling pathway during microglial activation. [BMB Reports 2021; 54(11): 557-562].

12.
Molecules ; 26(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206041

RESUMO

Parkinson's disease (PD) is characterized mainly by the loss of dopaminergic neurons in the substantia nigra (SN) mediated via oxidative stress. Although glutaredoxin-1 (GLRX1) is known as one of the antioxidants involved in cell survival, the effects of GLRX1 on PD are still unclear. In this study, we investigated whether cell-permeable PEP-1-GLRX1 inhibits dopaminergic neuronal cell death induced by 1-methyl-4-phenylpyridinium (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We showed that PEP-1-GLRX1 protects cell death and DNA damage in MPP+-exposed SH-SY5Y cells via the inhibition of MAPK, Akt, and NF-κB activation and the regulation of apoptosis-related protein expression. Furthermore, we found that PEP-1-GLRX1 was delivered to the SN via the blood-brain barrier (BBB) and reduced the loss of dopaminergic neurons in the MPTP-induced PD model. These results indicate that PEP-1-GLRX1 markedly inhibited the loss of dopaminergic neurons in MPP+- and MPTP-induced cytotoxicity, suggesting that this fusion protein may represent a novel therapeutic agent against PD.


Assuntos
Cisteamina/análogos & derivados , Neurônios Dopaminérgicos/citologia , Glutarredoxinas/administração & dosagem , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Peptídeos/química , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , 1-Metil-4-fenilpiridínio/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Cisteamina/química , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glutarredoxinas/química , Glutarredoxinas/farmacologia , Humanos , Masculino , Camundongos , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Substância Negra/química
13.
Plants (Basel) ; 10(6)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203930

RESUMO

In the present study, we examined the effects of Cissus verticillata leaf extracts (CVE) against hydrogen peroxide (H2O2)- and ischemia-induced neuronal damage in HT22 cells and gerbil hippocampus. Incubation with CVE produced concentration-dependent toxicity in HT22 cells. Significant cellular toxicity was observed with >75 µg/mL CVE. CVE treatment at 50 µg/mL ameliorated H2O2-induced reactive oxygen species formation, DNA fragmentation, and cell death in HT22 cells. In addition, incubation with CVE significantly mitigated the increase in Bax and decrease in Bcl-2 induced by H2O2 treatment in HT22 cells. In an in vivo study, the administration of CVE to gerbils significantly decreased ischemia-induced motor activity 1 d after ischemia, as well as neuronal death and microglial activation 4 d after ischemia, respectively. CVE treatment reduced the release of interleukin-1ß, interleukin-6, and tumor necrosis factor-α 6 h after ischemia. Furthermore, CVE treatment significantly ameliorated ischemia-induced phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase 1/2, and p38. These results suggest that CVE has the potential to reduce the neuronal damage induced by oxidative and ischemic stress by reducing the inflammatory responses and phosphorylation of MAPKs, suggesting that CVE could be a functional food to prevent neuronal damage induced by ischemia.

14.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34298879

RESUMO

Hypoxia is one of the representative microenvironment features in cancer and is considered to be associated with the dismal prognosis of patients. Hypoxia-driven cellular pathways are largely regulated by hypoxia-inducible factors (HIFs) and notably exert influence on the hallmarks of cancer, such as stemness, angiogenesis, invasion, metastasis, and the resistance towards apoptotic cell death and therapeutic resistance; therefore, hypoxia has been considered as a potential hurdle for cancer therapy. Growing evidence has demonstrated that long noncoding RNAs (lncRNAs) are dysregulated in cancer and take part in gene regulatory networks owing to their various modes of action through interacting with proteins and microRNAs. In this review, we focus attention on the relationship between hypoxia/HIFs and lncRNAs, in company with the possibility of lncRNAs as candidate molecules for controlling cancer.


Assuntos
Hipóxia/genética , Neoplasias/genética , RNA Longo não Codificante/genética , Microambiente Tumoral/genética , Animais , Apoptose/genética , Humanos , MicroRNAs/genética
15.
Mol Med Rep ; 24(3)2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34212986

RESUMO

Tumor necrosis factor (TNF)­α and TNF receptor 1 (TNF­R1) play diverse roles in modulating the neuronal damage induced by cerebral ischemia. The present study compared the time­dependent changes of TNF­α and TNF­R1 protein expression levels in the hippocampal subfield cornu ammonis 1 (CA1) between adult and young gerbils following transient forebrain ischemia (tFI), via western blot and immunohistochemistry analyses. In adult gerbils, delayed neuronal death of pyramidal neurons, the principal neurons in CA1, was recorded 4 days after tFI; however, in young gerbils, delayed neuronal death was recorded 7 days after tFI. TNF­α protein expression levels gradually increased in both groups following tFI; however, TNF­α expression was higher in young gerbils compared with adult gerbils. TNF­R1 protein expression levels markedly increased in both groups 1 day after tFI. Subsequently, TNF­R1 expression gradually decreased in young gerbils, whereas TNF­R1 expression levels were irregularly altered in adult gerbils following tFI. Notably, TNF­α immunoreactivity significantly increased in pyramidal neurons in both groups 1 day after tFI; however, the patterns altered between both groups. In adult gerbils, TNF­α immunoreactivity was rarely exhibited in pyramidal neurons 4 days after tFI due to neuronal death, suggesting that TNF­α immunoreactivity was newly expressed in astrocytes. In young gerbils, TNF­α immunoreactivity increased in pyramidal neurons 4 days after tFI, and TNF­α immunoreactivity was newly expressed in astrocytes. In addition, TNF­R1 immunoreactivity was exhibited in pyramidal cells of both sham groups, and significantly increased 1 day after tFI; however, the patterns altered between both groups. In adult gerbils, TNF­R1 immunoreactivity was rarely exhibited 4 days after tFI, and astrocytes newly expressed TNF­R1 immunoreactivity. In young gerbils, TNF­R1 immunoreactivity increased in pyramidal neurons 4 days after tFI; however, TNF­R1 immunoreactivity was not reported in pyramidal neurons and astrocytes thereafter. Taken together, the results of the present study suggest that different expression levels of TNF­α and TNF­R1 in ischemic CA1 between adult and young gerbils may be due to age­dependent differences of tFI­induced neuronal death.


Assuntos
Astrócitos/metabolismo , Região CA1 Hipocampal/metabolismo , Gerbillinae/metabolismo , Neurônios/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Isquemia Encefálica/patologia , Morte Celular , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Isquemia/patologia , Masculino , Neurogênese , Prosencéfalo , Células Piramidais/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/genética
16.
Free Radic Biol Med ; 172: 418-429, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34175438

RESUMO

Proline rich Akt substrate (PRAS40) is a component of mammalian target of rapamycin complex 1 (mTORC1) and activated mTORC1 plays important roles for cellular survival in response to oxidative stress. However, the roles of PRAS40 in dopaminergic neuronal cell death have not yet been examined. Here, we examined the roles of Tat-PRAS40 in MPP+- and MPTP-induced dopaminergic neuronal cell death. Our results showed that Tat-PRAS40 effectively transduced into SH-SY5Y cells and inhibited DNA damage, ROS generation, and apoptotic signaling in MPP+-induced SH-SY5Y cells. Further, these protective mechanisms of Tat-PRAS40 protein display through phosphorylation of Tat-PRAS40, Akt and direct interaction with 14-3-3σ protein, but not via the mTOR-dependent signaling pathway. In a Parkinson's disease animal model, Tat-PRAS40 transduced into dopaminergic neurons in mouse brain and significantly protected against dopaminergic cell death by phosphorylation of Tat-PRAS40, Akt and interaction with 14-3-3σ protein. In this study, we demonstrated for the first time that Tat-PRAS40 directly protects against dopaminergic neuronal cell death. These results indicate that Tat-PRAS40 may provide a useful therapeutic agent against oxidative stress-induced dopaminergic neuronal cell death, which causes diseases such as PD.


Assuntos
Neurônios Dopaminérgicos , Estresse Oxidativo , Animais , Apoptose , Morte Celular , Camundongos , Espécies Reativas de Oxigênio
17.
BMB Rep ; 54(9): 458-463, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34120676

RESUMO

Cytokines activate inflammatory signals and are major mediators in progressive ß-cell damage, which leads to type 1 diabetes mellitus. We recently showed that the cell-permeable Tat-CIAPIN1 fusion protein inhibits neuronal cell death induced by oxidative stress. However, how the Tat-CIAPIN1 protein affects cytokine-induced ß-cell damage has not been investigated yet. Thus, we assessed whether the Tat-CIAPIN1 protein can protect RINm5F ß-cells against cytokine-induced cytotoxicity. In cytokine-exposed RINm5F ß-cells, the transduced Tat-CIAPIN1 protein elevated cell survivals and reduced reactive oxygen species (ROS) and DNA fragmentation levels. The Tat-CIAPIN1 protein reduced mitogen-activated protein kinases (MAPKs) and NF-κB activation levels and elevated Bcl-2 protein, whereas Bax and cleaved Caspase-3 proteins were decreased by this fusion protein. Thus, the protection of RINm5F ß-cells by the Tat-CIAPIN1 protein against cytokine-induced cytotoxicity can suggest that the Tat-CIAPIN1 protein might be used as a therapeutic inhibitor against RINm5F ß-cell damage. [BMB Reports 2021; 54(9): 458-463].

18.
Neurochem Res ; 46(11): 2852-2866, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34050880

RESUMO

Transient ischemia in the brain causes blood-brain barrier (BBB) breakdown and dysfunction, which is related to ischemia-induced neuronal damage. Leakage of plasma proteins following transient ischemia is one of the indicators that is used to determine the extent of BBB dysfunction. In this study, neuronal damage/death, leakage of albumin and IgG, microgliosis, and inflammatory cytokine expression were examined in the hippocampal CA1 region, which is vulnerable to transient ischemia, following 5-min (mild) and 15-min (severe) ischemia in gerbils induced by transient common carotid arteries occlusion (tCCAo). tCCAo-induced neuronal damage/death occurred earlier and was more severe after 15-min tCCAo vs. after 5-min tCCAo. Significant albumin and IgG leakage (albumin and IgG immunoreactivity) took 1 or 2 days to begin, and immunoreactivity was markedly increased 5 days after 5-min tCCAo. While, albumin and IgG leakage began to increase 6 h after 15-min tCCAo and remained significantly higher over time than that seen in 5-min tCCAo. IgG immunoreactivity was observed in degenerating neurons and activated microglia after tCCAo, and microglia were activated to a greater extent after 15-min tCCAo than 5-min tCCAo. In addition, following 15-min tCCAo, pro-inflammatory cytokines [tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß)] immunoreactivity was significantly higher than that seen following 5-min tCCAo, whereas immunoreactivity of anti-inflammatory cytokines (IL-4 and IL-13) was lower in 15-min than 5-min tCCAo. These results indicate that duration of tCCAo differentially affects the timing and degree of neuronal damage or loss, albumin and IgG leakage and inflammatory cytokine expression in brain tissue. In addition, more severe BBB leakage is closely related to acceleration of neuronal damage through increased microglial activation and pro-inflammatory cytokine expression in the ischemic hippocampal CA1 region.

19.
Otolaryngol Head Neck Surg ; : 1945998211006929, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33878990

RESUMO

OBJECTIVE: To evaluate differences between manual and automated analyses of 24-hour multichannel intraluminal impedance-pH monitoring for diagnosis of laryngopharyngeal reflux. STUDY DESIGN: Case series with planned data collection. SETTING: Academic center outpatient clinic. METHODS: The study group comprised 127 patients with symptoms suspicious of laryngopharyngeal reflux, who underwent 24-hour multichannel intraluminal impedance-pH monitoring. Automated and manual analyses were performed for each patient. The following parameters were compared between analyses: number of proximal reflux episodes, proximal exposure time, symptom index, and symptom association probability. RESULTS: The number of proximal reflux episodes detected by manual analysis was significantly lower than that detected by automated analysis, except in acid reflux cases. The false positive of automated analysis was 39.8%. In addition, the proximal exposure time for manual analysis was significantly lower than that for automated analysis, except in cases of acid reflux. Symptom index and symptom association probability values based on manual analysis were significantly lower than in automated analysis, except in heartburn cases. CONCLUSIONS: Automated analysis demonstrated a tendency of excessive reflux measurement when compared with manual analysis. It is necessary to increase the accuracy of laryngopharyngeal reflux diagnosis through manual analysis.

20.
Molecules ; 26(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918660

RESUMO

Angelica gigas Nakai root contains decursin which exerts beneficial properties such as anti-amnesic and anti-inflammatory activities. Until now, however, the neuroprotective effects of decursin against transient ischemic injury in the forebrain have been insufficiently investigated. Here, we revealed that post-treatment with decursin and the root extract saved pyramidal neurons in the hippocampus following transient ischemia for 5 min in gerbil forebrain. Through high-performance liquid chromatography, we defined that decursin was contained in the extract as 7.3 ± 0.2%. Based on this, we post-treated with 350 mg/kg of extract, which is the corresponding dosage of 25 mg/kg of decursin that exerted neuroprotection in gerbil hippocampus against the ischemia. In addition, behavioral tests were conducted to evaluate ischemia-induced dysfunctions via tests of spatial memory (by the 8-arm radial maze test) and learning memory (by the passive avoidance test), and post-treatment with the extract and decursin attenuated ischemia-induced memory impairments. Furthermore, we carried out histochemistry, immunohistochemistry, and double immunohistofluorescence. Pyramidal neurons located in the subfield cornu ammonis 1 (CA1) among the hippocampal subfields were dead at 5 days after the ischemia; however, treatment with the extract and decursin saved the pyramidal neurons after ischemia. Immunoglobulin G (IgG, an indicator of extravasation), which is not found in the parenchyma in normal brain tissue, was apparently shown in CA1 parenchyma from 2 days after the ischemia, but IgG leakage was dramatically attenuated in the CA1 parenchyma treated with the extract and decursin. Furthermore, astrocyte endfeet, which are a component of the blood-brain barrier (BBB), were severely damaged at 5 days after the ischemia; however, post-treatment with the extract and decursin dramatically attenuated the damage of the endfeet. In brief, therapeutic treatment of the extract of Angelica gigas Nakai root and decursin after 5 min transient forebrain ischemia protected hippocampal neurons from the ischemia, showing that ischemia-induced BBB leakage and damage of astrocyte endfeet was significantly attenuated by the extract and decursin. Based on these findings, we suggest that Angelica gigas Nakai root containing decursin can be employed as a pharmaceutical composition to develop a therapeutic strategy for brain ischemic injury.


Assuntos
Angelica/química , Astrócitos/patologia , Benzopiranos/uso terapêutico , Barreira Hematoencefálica/patologia , Butiratos/uso terapêutico , Ataque Isquêmico Transitório/patologia , Extratos Vegetais/uso terapêutico , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Benzopiranos/química , Benzopiranos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Butiratos/química , Butiratos/farmacologia , Gerbillinae , Proteína Glial Fibrilar Ácida/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Imunoglobulina G/metabolismo , Masculino , Neuraminidase/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/farmacologia , Padrões de Referência , Memória Espacial/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...