Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Filtros adicionais











Intervalo de ano
1.
ACS Nano ; 13(8): 8977-8985, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31390182

RESUMO

Self-healing technology promises a generation of innovation in cross-cutting subjects ranging from electronic skins, to wearable electronics, to point-of-care biomedical sensing modules. Recently, scientists have successfully pulled off significant advances in self-healing components including sensors, energy devices, transistors, and even integrated circuits. Lasers, one of the most important light sources, integrated with autonomous self-healability should be endowed with more functionalities and opportunities; however, the study of self-healing lasers is absent in all published reports. Here, the soft and self-healable random laser (SSRL) is presented. The SSRL can not only endure extreme external strain but also withstand several cutting/healing test cycles. Particularly, the damaged SSRL enables its functionality to be restored within just few minutes without the need of additional energy, chemical/electrical agents, or other healing stimuli, truly exhibiting a supple yet robust laser prototype. It is believed that SSRL can serve as a vital building block for next-generation laser technology as well as follow-on self-healing optoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA