Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 35(5): 1357-1368, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30089354

RESUMO

Self-cleaning surfaces allow the reversible attachment and detachment of microorganisms which show great promise in regards to their reusability as smart biomaterials. However, a widely used biomaterial such as polydimethylsiloxane (PDMS) suffers from high biofouling activity and hydrophobic recovery that results in decreased efficiency and stability. A current challenge is to modify and fabricate self-cleaning PDMS surfaces by incorporating antifouling and pH-sensitive properties. To address this, we synthesized a zwitterionic and pH-sensitive random poly(glycidyl methacrylate- co-sulfobetaine methacrylate- co-2-(dimethylamino)ethyl methacrylate) polymer, poly(GMA- co-SBMA- co-DMAEMA). In this work, chemical modification of PDMS was done by grafting onto poly(GMA- co-SBMA- co-DMAEMA) after surface activation via UV and ozone for 90 min to ensure the formation of covalent bonds necessary for stable grafting. The PDMS grafted with G20-S40-D40 exhibit antifouling and pH-sensitive properties by mitigating fibrinogen adsorption, blood cell adhesion, and releasing 98% adhered E. coli bacteria after immersion at basic pH. The grafting of poly(GMA- co-SBMA- co-DMAEMA) presented in this work shows attractive potential for biomedical and industrial applications as a simple, smart, and effective method for the modification of PDMS interfaces.

2.
J Colloid Interface Sci ; 529: 77-89, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29886229

RESUMO

Bio-inert biomaterial design is vital for fields like biosensors, medical implants, and drug delivery systems. Bio-inert materials are generally hydrophilic and electrical neutral. One limitation faced in the design of bio-inert materials is that most of the modifiers used are specific to their substrate. In this work, we synthesized a novel zwitterionic copolymer containing a catechol group, a non-substrate dependent biomimetic anchoring segment, that can form a stable coating on various materials. No previous study was conducted using a grafting-to approach and determined the critical amount of catechol groups needed to effectively modify a material. The synthesized copolymers of sulfobetaine acrylamide (SBAA) and dopamine methacrylamide (DMA) in this work contains varying numbers of catechol groups, in which the critical number of catechol groups that had effectively modified substrates to have the bio-inert property was determined. The bio-inert property and capability to do coating on versatile substrates were evaluated in contact with human blood by coating different material groups such as ceramic, metallic, and polymeric groups. The novel structure and the simple grafting-to approach provides bio-inert property on various materials, giving them non-specific adsorption and attachment of biomolecules such as plasma proteins, erythrocytes, thrombocytes, bacteria, and tissue cells (85-95% reduction).


Assuntos
Acrilamidas/química , Betaína/análogos & derivados , Materiais Biocompatíveis/química , Materiais Biomiméticos/química , Catecóis/química , Dopamina/análogos & derivados , Acrilamidas/síntese química , Acrilamidas/metabolismo , Animais , Betaína/síntese química , Betaína/química , Betaína/metabolismo , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/metabolismo , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/metabolismo , Biomimética/métodos , Catecóis/síntese química , Catecóis/metabolismo , Linhagem Celular , Dopamina/síntese química , Dopamina/metabolismo , Humanos , Teste de Materiais , Camundongos
3.
Langmuir ; 33(38): 9822-9835, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28830143

RESUMO

Titanium and stainless steel materials are widely used in numerous devices or in custom parts for their excellent mechanical properties. However, their lack of biocompatibility seriously limits their usage in the biomedical field. This study focuses on the grafting of triblock copolymers on titanium and stainless steel metal susbtrates for improving their general biofouling resistance. The series of copolymers that we designed is composed of two blocks of zwitterionic sulfobetaine (SBMA) monomers and one block of glycidyl methacrylate (GMA). The number of repeat units forming each block, n, was finely tuned and controlled to 25, 50, 75, or 100, permitting regulation of the grafting thickness, the morphology, and the dependent properties such as the surface hydrophilicity and biofouling resistance. It was shown that the copolymer possessing n = 50 repeat units in each block, corresponding to a molecular weight of about 15.2 kDa, led to the best nonfouling properties, assessed using plasma proteins, blood cells, fibroblasts cells, and various bacteria. This was explained by an optimized grafting degree and chain organization of the copolymer. Lower value (n = 25) and higher values (n = 75, 100) led to low surface coverage and the formation of aggregates, respectively. The best copolymer was grafted onto scalpels (steel) and dental roots (titanium), and antifouling properties demonstrated using Escherichia coli and HT1080 cells. Results of this work show that this unique triblock copolymer holds promise as a potential material for surface modification of biomedical metallic devices, provided a fine-tuning of the blocks organization and length.

4.
Nanoscale ; 9(8): 2865-2874, 2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28169391

RESUMO

In bioenvironmental detection, surface-enhanced Raman scattering (SERS) signals are greatly affected by anti-specific biomolecule adsorption, which generates strong background noise, reducing detection sensitivity and selectivity. It is thus necessary to modify the SERS substrate surface to make it anti-fouling to maintain excellent SERS signals. Herein, we propose a zwitterionic copolymer, namely poly(glycidyl methacrylate-co-sulfobetaine methacrylate) (poly(GMA-co-SBMA)), for the surface modification of SERS substrates, which were fabricated and characterized spectroscopically. The copolymer was grafted onto Ag nanocubes (NCs) on an Ag surface with massive nanogaps via 1,2-ethanedithiol, which acted as a metal-insulator-metal (MIM) substrate. The high density of poly(GMA-co-SBMA) grafted near NCs favored the formation of connections between adjacent NCs, causing strong surface plasmon resonance at these junctions. With the zwitterionic-copolymer-modified surface, the adhesion of large biomolecules in platelet-rich plasma (PRP) solution can be effectively resisted, as determined from immunoassay and fibrinogen adsorption results. The SERS signals for malachite green (MG) in PRP solution (10-6 M) were effectively distinguished using the copolymer-grafted MIM substrate. MG was deposited on adjacent copolymer-grafted NCs, which amplified the SERS signals. Moreover, the copolymer connected adjacent NCs, inducing the electromagnetic effect at copolymer-grafted surfaces, which improved the SERS mechanism. The hydration process restructured the MG-trapped copolymer-grafted surface, decreasing the number of MG characteristic peak regions and increasing that of the copolymer regions. These results reveal that grafting a copolymer onto an MIM substrate allows MG to be easily trapped and released in complex biomatrices and increases surface reproducibility due to anti-fouling, leading to high SERS enhancement.


Assuntos
Cátions , Plasma Rico em Plaquetas/química , Corantes de Rosanilina/análise , Análise Espectral Raman , Adsorção , Humanos , Metacrilatos/química , Reprodutibilidade dos Testes , Propriedades de Superfície
5.
Acta Biomater ; 40: 31-37, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27090589

RESUMO

UNLABELLED: For surface-based diagnostic devices to achieve reliable biomarker detection in complex media such as blood, preventing nonspecific protein adsorption and incorporating high loading of biorecognition elements are paramount. In this work, a novel method to produce nonfouling zwitterionic hydrogel coatings was developed to achieve these goals. Poly(carboxybetaine acrylamide) (pCBAA) hydrogel thin films (CBHTFs) prepared with a carboxybetaine diacrylamide crosslinker (CBAAX) were coated on gold and silicon dioxide surfaces via a simple spin coating process. The thickness of CBHTFs could be precisely controlled between 15 and 150nm by varying the crosslinker concentration, and the films demonstrated excellent long-term stability. Protein adsorption from undiluted human blood serum onto the CBHTFs was measured with surface plasmon resonance (SPR). Hydrogel thin films greater than 20nm exhibited ultra-low fouling (<5ng/cm(2)). In addition, the CBHTFs were capable of high antibody functionalization for specific biomarker detection without compromising their nonfouling performance. This strategy provides a facile method to modify SPR biosensor chips with an advanced nonfouling material, and can be potentially expanded to a variety of implantable medical devices and diagnostic biosensors. STATEMENT OF SIGNIFICANCE: In this work, we developed an approach to realize ultra-low fouling and high ligand loading with a highly-crosslinked, purely zwitterionic, carboxybetaine thin film hydrogel (CBHTF) coating platform. The CBHTF on a hydrophilic surface demonstrated long-term stability. By varying the crosslinker content in the spin-coated hydrogel solution, the thickness of CBHTFs could be precisely controlled. Optimized CBHTFs exhibited ultra-low nonspecific protein adsorption below 5ng/cm(2) measured by a surface plasmon resonance (SPR) sensor, and their 3D architecture allowed antibody loading to reach 693ng/cm(2). This strategy provides a facile method to modify SPR biosensor chips with an advanced nonfouling material, and can be potentially expanded to a variety of implantable medical devices and diagnostic biosensors.


Assuntos
Aminoácidos Cíclicos/química , Anticorpos/química , Técnicas Biossensoriais/métodos , Materiais Revestidos Biocompatíveis/química , Ciclobutanos/química , Hidrogéis/química , Membranas Artificiais , Humanos
6.
Acta Biomater ; 40: 78-91, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27045347

RESUMO

UNLABELLED: Most biomaterials have a lack of a simple, efficient and robust antifouling modification approach that limits their potential for biomedical applications. The challenge is to develop a universal surface grafting solution to meet the antifouling requirement. In this work, a new formulation of zwitterionic sulfobetaine-based copolymer, ploy(glycidyl methacrylate-co-sulfobetaine methacrylate) (poly(GMA-co-SBMA)), is designed as a chemical for grafting onto material and is introduced for the surface zwitterionization of versatile biomaterials, including ceramic, metal, and plastics. The grafting principle used to stabilize the poly(GMA-co-SBMA) on the target surfaces is based the base-induced ring opening reaction between epoxied and hydroxyl groups. A universal surface modification procedure was developed and performed from an optimized sequence of ultra-violet ozone pretreatment and trimethylamine-catalyzed zwitterionization on a selective case of versatile surfaces including silicon wafer, ceramic glass, titanium, steel, and polystyrene. The prepared poly(GMA-co-SBMA) with an optimum PGMA/PSBMA ratio of 0.23 and a molecular weight of 25kDa exhibited the best resistance to fibrinogen adsorption with over 90% reduction as well as blood cell activation, tissue cell adhesion and bacterial attachment on the zwitterionic copolymer grafted surfaces. The developed antifouling grafting introduces a universal modification method to generate zwitterionic interfaces on versatile biomaterial substrates, providing great potential for application in medical device coating. STATEMENT OF SIGNIFICANCE: A simple, efficient and robust antifouling modification approach is critical for many scientific interests and industrial applications. In current stage, the existing available zwitterionic modifications suffer from the lack of universal surface grafting solution to achieve the antifouling requirement on versatile biomaterial substrates. In this study, we synthesized and characterized a new zwitterionic sulfobetaine-based copolymer, ploy(glycidyl methacrylate-co-sulfobetaine methacrylate) (poly(GMA-co-SBMA)), which is designed as chemical grafting onto material and introduced for the surface zwitterionization of versatile biomaterials, including ceramic, metal, and plastics. This research have a promising opportunity for the application of stealth biomaterial interfaces on the next generation of medical devices.


Assuntos
Betaína/análogos & derivados , Plaquetas/metabolismo , Compostos de Epóxi/química , Escherichia coli/metabolismo , Fibroblastos/metabolismo , Metilmetacrilatos/química , Streptococcus mutans/metabolismo , Betaína/química , Adesão Celular , Linhagem Celular , Humanos , Adesividade Plaquetária
7.
ACS Appl Mater Interfaces ; 7(19): 10096-107, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25912841

RESUMO

We introduced a thermosettable zwitterionic copolymer to design a high temperature tolerance biomaterial as a general antifouling polymer interface. The original synthetic fouling-resistant copolymer, poly(vinylpyrrolidone)-co-poly(sulfobetaine methacrylate) (poly(VP-co-SBMA)), is both thermal-tolerant and fouling-resistant, and the antifouling stability of copolymer coated interfaces can be effectively controlled by regulating the VP/SBMA composition ratio. We studied poly(VP-co-SBMA) copolymer gels and networks with a focus on their general resistance to protein, cell, and bacterial bioadhesion, as influenced by the thermosetting process. Interestingly, we found that the shape of the poly(VP-co-SBMA) copolymer material can be set at a high annealing temperature of 200 °C while maintaining good antifouling properties. However, while the zwitterionic PSBMA polymer gels were bioinert as expected, control of the fouling resistance of the PSBMA polymer networks was lost in the high temperature annealing process. A poly(VP-co-SBMA) copolymer network composed of PSBMA segments at 32 mol % showed reduced fibrinogen adsorption, tissue cell adhesion, and bacterial attachment, but a relatively higher PSBMA content of 61 mol % was required to optimize resistance to platelet adhesion and erythrocyte attachment to confer hemocompatibility to human blood. We suggest that poly(VP-co-SBMA) copolymers capable of retaining stable fouling resistance after high temperature shaping have a potential application as thermosettable materials in a bioinert interface for medical devices, such as the thermosettable coating on a stainless steel blood-compatible metal stent investigated in this study.


Assuntos
Aderência Bacteriana/fisiologia , Proteínas Sanguíneas/química , Proliferação de Células/fisiologia , Materiais Revestidos Biocompatíveis/química , Metacrilatos/química , Povidona/análogos & derivados , Células Cultivadas , Escherichia coli/citologia , Escherichia coli/fisiologia , Dureza , Humanos , Íons , Teste de Materiais , Adesividade Plaquetária/fisiologia , Povidona/química , Ligação Proteica , Eletricidade Estática , Temperatura
8.
ACS Nano ; 9(3): 2668-76, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25738888

RESUMO

Reliable surface-enhanced Raman scattering (SERS) based biosensing in complex media is impeded by nonspecific protein adsorptions. Because of the near-field effect of SERS, it is challenging to modify SERS-active substrates using conventional nonfouling materials without introducing interference from their SERS signals. Herein, we report a stealth surface modification strategy for sensitive, specific and accurate detection of fructose in protein solutions using SERS by forming a mixed self-assembled monolayer (SAM). The SAM consists of a short zwitterionic thiol, N,N-dimethyl-cysteamine-carboxybetaine (CBT), and a fructose probe 4-mercaptophenylboronic acid (4-MPBA). The specifically designed and synthesized CBT not only resists protein fouling effectively, but also has very weak Raman activity compared to 4-MPBA. Thus, the CBT SAM provides a stealth surface modification to SERS-active substrates. The surface compositions of mixed SAMs were investigated using X-ray photoelectron spectroscopy (XPS) and SERS, and their nonfouling properties were studied with a surface plasmon resonance (SPR) biosensor. The mixed SAM with a surface composition of 94% CBT demonstrated a very low bovine serum albumin (BSA) adsorption (∼3 ng/cm(2)), and moreover, only the 4-MPBA signal appeared in the SERS spectrum. With the use of this surface-modified SERS-active substrate, quantification of fructose over clinically relevant concentrations (0.01-1 mM) was achieved. Partial least-squares regression (PLS) analysis showed that the detection sensitivity and accuracy were maintained for the measurements in 1 mg/mL BSA solutions. This stealth surface modification strategy provides a novel route to introduce nonfouling property to SERS-active substrates for SERS biosensing in complex media.


Assuntos
Técnicas Biossensoriais/métodos , Soroalbumina Bovina/química , Análise Espectral Raman/métodos , Animais , Betaína/química , Ácidos Borônicos/química , Bovinos , Frutose/análise , Soluções , Compostos de Sulfidrila/química , Propriedades de Superfície
9.
Opt Express ; 22(24): 29996-30003, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25606929

RESUMO

We demonstrate porous silicon biological probes as a stable and non-toxic alternative to organic dyes or cadmium-containing quantum dots for imaging and sensing applications. The fluorescent silicon quantum dots which are embedded on the porous silicon surface are passivated with carboxyl-terminated ligands through stable Si-C covalent bonds. The porous silicon bio-probes have shown photoluminescence quantum yield around 50% under near-UV excitation, with high photochemical and thermal stability. The bio-probes can be efficiently conjugated with antibodies, which is confirmed by a standard enzyme-linked immunosorbent assay (ELISA) method.


Assuntos
Corantes Fluorescentes/química , Teoria Quântica , Silício/química , Microscopia de Fluorescência , Tamanho da Partícula , Porosidade , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA