Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(2): 026202, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36706414

RESUMO

Band topology is traditionally analyzed in terms of gauge-invariant observables associated with crystalline Bloch wave functions. Recent work has demonstrated that many of the free fermion topological characteristics survive even in an amorphous setting. In this Letter, we extend these studies to incorporate the effect of strong repulsive interactions on the fate of topology and other correlation induced phenomena. Using a parton-based mean-field approach, we obtain the interacting phase diagram for an electronic two-orbital model with tunable topology in a two-dimensional amorphous network. In addition to the (non-)topological phases that are adiabatically connected to the free fermion limit, we find a number of strongly interacting amorphous analogs of crystalline Mott insulating phases with nontrivial chiral neutral edge modes, and a fractionalized Anderson insulating phase. The amorphous networks thus provide a new playground for studying a plethora of exotic states of matter, and their glassy dynamics, due to the combined effects of nontrivial topology, disorder, and strong interactions.

2.
Phys Rev E ; 106(5): L052601, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36559468

RESUMO

The onset of rigidity in interacting liquids, as they undergo a transition to a disordered solid, is associated with a rearrangement of the low-frequency vibrational spectrum. In this Letter, we derive scaling forms for the singular dynamical response of disordered viscoelastic networks near both jamming and rigidity percolation. Using effective-medium theory, we extract critical exponents, invariant scaling combinations, and analytical formulas for universal scaling functions near these transitions. Our scaling forms describe the behavior in space and time near the various onsets of rigidity, for rigid and floppy phases and the crossover region, including diverging length scales and timescales at the transitions.

3.
Sci Adv ; 8(12): eabk1911, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35333575

RESUMO

Moiré superlattices constructed from transition metal dichalcogenides have demonstrated a series of emergent phenomena, including moiré excitons, flat bands, and correlated insulating states. All of these phenomena depend crucially on the presence of strong moiré potentials, yet the properties of these moiré potentials, and the mechanisms by which they can be generated, remain largely open questions. Here, we use angle-resolved photoemission spectroscopy with submicron spatial resolution to investigate an aligned WS2/WSe2 moiré superlattice and graphene/WS2/WSe2 trilayer heterostructure. Our experiments reveal that the hybridization between moiré bands in WS2/WSe2 exhibits an unusually large momentum dependence, with the splitting between moiré bands at the Γ point more than an order of magnitude larger than that at K point. In addition, we discover that the same WS2/WSe2 superlattice can imprint an unexpectedly large moiré potential on a third, separate layer of graphene (g/WS2/WSe2), suggesting new avenues for engineering two-dimensional moiré superlattices.

4.
Nature ; 597(7876): 350-354, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34526709

RESUMO

The evolution of a Landau Fermi liquid into a non-magnetic Mott insulator with increasing electronic interactions is one of the most puzzling quantum phase transitions in physics1-6. The vicinity of the transition is believed to host exotic states of matter such as quantum spin liquids4-7, exciton condensates8 and unconventional superconductivity1. Semiconductor moiré materials realize a highly controllable Hubbard model simulator on a triangular lattice9-22, providing a unique opportunity to drive a metal-insulator transition (MIT) via continuous tuning of the electronic interactions. Here, by electrically tuning the effective interaction strength in MoTe2/WSe2 moiré superlattices, we observe a continuous MIT at a fixed filling of one electron per unit cell. The existence of quantum criticality is supported by the scaling collapse of the resistance, a continuously vanishing charge gap as the critical point is approached from the insulating side, and a diverging quasiparticle effective mass from the metallic side. We also observe a smooth evolution of the magnetic susceptibility across the MIT and no evidence of long-range magnetic order down to ~5% of the Curie-Weiss temperature. This signals an abundance of low-energy spinful excitations on the insulating side that is further corroborated by the Pomeranchuk effect observed on the metallic side. Our results are consistent with the universal critical theory of a continuous Mott transition in two dimensions4,23.

5.
Phys Rev Lett ; 124(7): 076801, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32142336

RESUMO

Recent experiments on magic-angle twisted bilayer graphene have discovered correlated insulating behavior and superconductivity at a fractional filling of an isolated narrow band. Here we show that magic-angle bilayer graphene exhibits another hallmark of strongly correlated systems-a broad regime of T-linear resistivity above a small density-dependent crossover temperature-for a range of fillings near the correlated insulator. This behavior is reminiscent of similar behavior in other strongly correlated systems, often denoted "strange metals," such as cuprates, iron pnictides, ruthenates, and cobaltates, where the observations are at odds with expectations in a weakly interacting Fermi liquid. We also extract a transport "scattering rate," which satisfies a near Planckian form that is universally related to the ratio of (k_{B}T/ℏ). Our results establish magic-angle bilayer graphene as a highly tunable platform to investigate strange metal behavior, which could shed light on this mysterious ubiquitous phase of correlated matter.

6.
Sci Adv ; 4(10): eaau5501, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30345365

RESUMO

Domain walls (DWs) are singularities in an ordered medium that often host exotic phenomena such as charge ordering, insulator-metal transition, or superconductivity. The ability to locally write and erase DWs is highly desirable, as it allows one to design material functionality by patterning DWs in specific configurations. We demonstrate such capability at room temperature in a charge density wave (CDW), a macroscopic condensate of electrons and phonons, in ultrathin 1T-TaS2. A single femtosecond light pulse is shown to locally inject or remove mirror DWs in the CDW condensate, with probabilities tunable by pulse energy and temperature. Using time-resolved electron diffraction, we are able to simultaneously track anti-synchronized CDW amplitude oscillations from both the lattice and the condensate, where photoinjected DWs lead to a red-shifted frequency. Our demonstration of reversible DW manipulation may pave new ways for engineering correlated material systems with light.

7.
Phys Rev Lett ; 120(26): 266601, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30004777

RESUMO

Tunneling of electrons into a two-dimensional electron system is known to exhibit an anomaly at low bias, in which the tunneling conductance vanishes due to a many-body interaction effect. Recent experiments have measured this anomaly between two copies of the half-filled Landau level as a function of in-plane magnetic field, and they suggest that increasing spin polarization drives a deeper suppression of tunneling. Here, we present a theory of the tunneling anomaly between two copies of the partially spin-polarized Halperin-Lee-Read state, and we show that the conventional description of the tunneling anomaly, based on the Coulomb self-energy of the injected charge packet, is inconsistent with the experimental observation. We propose that the experiment is operating in a different regime, not previously considered, in which the charge-spreading action is determined by the compressibility of the composite fermions.

8.
Nat Commun ; 9(1): 1766, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720630

RESUMO

Samarium hexaboride is a classic three-dimensional mixed valence system with a high-temperature metallic phase that evolves into a paramagnetic charge insulator below 40 K. A number of recent experiments have suggested the possibility that the low-temperature insulating bulk hosts electrically neutral gapless fermionic excitations. Here we show that a possible ground state of strongly correlated mixed valence insulators-a composite exciton Fermi liquid-hosts a three dimensional Fermi surface of a neutral fermion, that we name the "composite exciton." We describe the mechanism responsible for the formation of such excitons, discuss the phenomenology of the composite exciton Fermi liquids and make comparison to experiments in SmB6.

9.
Nat Commun ; 5: 5771, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25493606

RESUMO

The nature of the pseudogap regime of cuprate superconductors at low hole density remains unresolved. It has a number of seemingly distinct experimental signatures: a suppression of the paramagnetic spin susceptibility at high temperatures, low-energy electronic excitations that extend over arcs in the Brillouin zone, X-ray detection of charge-density wave order at intermediate temperatures and quantum oscillations at high magnetic fields and low temperatures. Here we show that a model of competing charge-density wave and superconducting orders provides a unified description of the intermediate and low-temperature regimes. We treat quantum oscillations at high field beyond semiclassical approximations, and find clear and robust signatures of an electron pocket compatible with existing observations; we also predict oscillations due to additional hole pockets. In the zero-field and intermediate temperature regime, we compute the electronic spectrum in the presence of thermally fluctuating charge-density and superconducting orders. Our results are compatible with experimental trends.

10.
Phys Rev Lett ; 111(15): 157004, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24160621

RESUMO

We present a general theory of the singularity in the London penetration depth at symmetry-breaking and topological quantum critical points within a superconducting phase. While the critical exponents and ratios of amplitudes on the two sides of the transition are universal, an overall sign depends upon the interplay between the critical theory and the underlying Fermi surface. We determine these features for critical points to spin density wave and nematic ordering, and for a topological transition between a superconductor with Z2 fractionalization and a conventional superconductor. We note implications for recent measurements of the London penetration depth in BaFe2(As(1-x)P(x))2 [K. Hashimoto et al., Science 336, 1554 (2012)].

11.
Rev Sci Instrum ; 83(12): 123906, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23278004

RESUMO

We present here the design of a sensitive compact Faraday-modulator (CFM) based optical magnetometer for imaging the distribution of weak local magnetic fields inside hysteretic magnetic materials. The system developed has a root-mean-square noise level of 50 mG Hz(-1/2) at a full frame rate of 1 fps (frame per second) with each frame being of size 512 × 512 pixels. By measuring the local magnetic field distribution in different superconducting samples we show that our magnetometer provides an order of magnitude improvement in the signal-to-noise ratio at low fields as compared to ordinary magneto-optical imaging technique. Moreover, it provides the required sensitivity for imaging the weak magnetization response near a superconducting transition where a number of other imaging techniques are practically unviable. An advantage of our CFM design is that it can be scaled in size to fit into situations with tight space constraints.

12.
Science ; 334(6059): 1137-41, 2011 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-22021673

RESUMO

In the Caenorhabditis elegans zygote, a conserved network of partitioning-defective (PAR) polarity proteins segregates into an anterior and a posterior domain, facilitated by flows of the cortical actomyosin meshwork. The physical mechanisms by which stable asymmetric PAR distributions arise from transient cortical flows remain unclear. We present evidence that PAR polarity arises from coupling of advective transport by the flowing cell cortex to a multistable PAR reaction-diffusion system. By inducing transient PAR segregation, advection serves as a mechanical trigger for the formation of a PAR pattern within an otherwise stably unpolarized system. We suggest that passive advective transport in an active and flowing material may be a general mechanism for mechanochemical pattern formation in developmental systems.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Polaridade Celular , Embrião não Mamífero/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Citoplasma/metabolismo , Difusão , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Proteínas Serina-Treonina Quinases , Transporte Proteico
13.
Biophys J ; 99(8): 2443-52, 2010 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-20959084

RESUMO

Obtaining quantitative kinetic parameters from fluorescence recovery after photobleaching (FRAP) experiments generally requires a theoretical analysis of protein mobility and appropriate solutions for FRAP recovery derived for a given geometry. Here we provide a treatment of FRAP recovery for a molecule undergoing a combined process of reversible membrane association and lateral diffusion on the plasma membrane for two commonly used bleach geometries: stripes, and boxes. Such analysis is complicated by the fact that diffusion of a molecule during photobleaching can lead to broadening of the bleach area, resulting in significant deviations of the actual bleach shape from the desired bleach geometry, which creates difficulty in accurately measuring kinetic parameters. Here we overcome the problem of deviations between actual and idealized bleach geometries by parameterizing, more accurately, the initial postbleach state. This allows for reconstruction of an accurate and analytically tractable approximation of the actual fluorescence distribution. Through simulated FRAP experiments, we demonstrate that this method can be used to accurately measure a broad range of combinations of diffusion constants and exchange rates. Use of this method to analyze the plextrin homology domain of PLC-δ1 in Caenorhabditis elegans results in quantitative agreement with prior analysis of this domain in other cells using other methods. Because of the flexibility, relative ease of implementation, and its use of standard, easily obtainable bleach geometries, this method should be broadly applicable to investigation of protein dynamics at the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Citoplasma/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Proteínas/metabolismo , Animais , Caenorhabditis elegans/enzimologia , Difusão , Células HEK293 , Humanos , Modelos Biológicos , Fosfolipase C delta/metabolismo , Reprodutibilidade dos Testes
14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(1 Pt 2): 016205, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20866705

RESUMO

We present analytical calculations and numerical simulations for the synchronization of oscillators interacting via a long-range power law interaction on a one-dimensional lattice. We have identified the critical value of the power law exponent α(c) across which a transition from a synchronized to an unsynchronized state takes place for a sufficiently strong but finite coupling strength in the large system limit. We find α(c)=3/2. Frequency entrainment and phase ordering are discussed as a function of α≥1 . The calculations are performed using an expansion about the aligned phase state (spin-wave approximation) and a coarse graining approach. We also generalize the spin-wave results to the d -dimensional problem.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(1 Pt 1): 012101, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20365412

RESUMO

It is well known that the dynamics of a quantum system is always nonadiabatic in passage through a quantum critical point and the defect density in the final state following a quench shows a power-law scaling with the rate of quenching. However, we propose here a possible situation where the dynamics of a quantum system in passage across quantum critical regions is adiabatic and the defect density decays exponentially. This is achieved by incorporating additional interactions which lead to quantum critical behavior and gapless phases but do not participate in the time evolution of the system. To illustrate the general argument, we study the defect generation in the quantum critical dynamics of a spin-1/2 anisotropic quantum XY spin chain with three spin interactions and a linearly driven staggered magnetic field.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(1 Pt 1): 011908, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19658730

RESUMO

Syntheses of protein molecules in a cell are carried out by ribosomes. A ribosome can be regarded as a molecular motor which utilizes the input chemical energy to move on a messenger RNA (mRNA) track that also serves as a template for the polymerization of the corresponding protein. The forward movement, however, is characterized by an alternating sequence of translocation and pause. Using a quantitative model, which captures the mechanochemical cycle of an individual ribosome, we derive an exact analytical expression for the distribution of its dwell times at the successive positions on the mRNA track. Inverse of the average dwell time satisfies a "Michaelis-Menten-type" equation and is consistent with the general formula for the average velocity of a molecular motor with an unbranched mechanochemical cycle. Extending this formula appropriately, we also derive the exact force-velocity relation for a ribosome. Often many ribosomes simultaneously move on the same mRNA track, while each synthesizes a copy of the same protein. We extend the model of a single ribosome by incorporating steric exclusion of different individuals on the same track. We draw the phase diagram of this model of ribosome traffic in three-dimensional spaces spanned by experimentally controllable parameters. We suggest new experimental tests of our theoretical predictions.


Assuntos
Modelos Biológicos , Ribossomos/metabolismo , Fenômenos Biomecânicos , Difusão , Cinética , Movimento , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...