Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 51(10): 1434-1436, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31548721
2.
Nat Genet ; 51(3): 431-444, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804558

RESUMO

Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.


Assuntos
Transtorno do Espectro Autista/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Dinamarca , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Herança Multifatorial/genética , Fenótipo , Fatores de Risco
3.
Sci Rep ; 8(1): 16486, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405140

RESUMO

Schizophrenia is a common and severe mental disorder arising from complex gene-environment interactions affecting brain development and functioning. While a consensus on the neuroanatomical correlates of schizophrenia is emerging, much of its fundamental pathobiology remains unknown. In this study, we explore brain morphometry in mice with genetic susceptibility and phenotypic relevance to schizophrenia (Brd1+/- mice) using postmortem 3D MR imaging coupled with histology, immunostaining and regional mRNA marker analysis. In agreement with recent large-scale schizophrenia neuroimaging studies, Brd1+/- mice displayed subcortical abnormalities, including volumetric reductions of amygdala and striatum. Interestingly, we demonstrate that structural alteration in striatum correlates with a general loss of striatal neurons, differentially impacting subpopulations of medium-sized spiny neurons and thus potentially striatal output. Akin to parvalbumin interneuron dysfunction in patients, a decline in parvalbumin expression was noted in the developing cortex of Brd1+/- mice, mainly driven by neuronal loss within or near cortical layer V, which is rich in corticostriatal projection neurons. Collectively, our study highlights the translational value of the Brd1+/- mouse as a pre-clinical tool for schizophrenia research and provides novel insight into its developmental, structural, and cellular pathology.

4.
Microvasc Res ; 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30144413

RESUMO

The blood-brain barrier consists of a tightly sealed monolayer of endothelial cells being vital in maintaining a stable intracerebral microenvironment. The barrier is receptive to leakage upon exposure to environmental factors, like hypoxia, and its disruption has been suggested as a constituent in the pathophysiology of both neurological and psychiatric disorders. The schizophrenia associated ZEB1 gene encodes a transcription factor susceptible to transcriptional control by a hypoxia induced factor, HIF1A, known to be implicated in blood-brain barrier dysfunction. However, whether ZEB1 is also implicated in maintaining blood-brain barrier integrity upon hypoxia is unknown. Here we assessed Hif1a, Zo1 and Zeb1 mRNA expression and ZO1 protein abundancy in a mimetic system of the in vivo blood-brain barrier comprising mouse brain endothelial cells subjected to the norm- and proven hypoxic conditions. Despite that, Hif1a mRNA expression was significantly increased, clearly indicating that the oxygen-deprived environment introduced a hypoxia response in the cells, we found no hypoxia-induced changes in neither ZO1 abundancy nor in the expression of Zo1 and Zeb1 mRNA. However, independent of hypoxia status, we found that Zeb1 and Zo1 mRNA expression is highly correlated. Further studies are warranted that investigate the implication of the ZEB1/ZO1 axis in blood-brain barrier maintenance under different physiological conditions.

5.
Neuroendocrinology ; 107(2): 167-180, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29949799

RESUMO

OBJECTIVE: Autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI) is characterized by severe polyuria and polydipsia and is caused by variations in the gene encoding the AVP prohormone. This study aimed to ascertain a correct diagnosis, to identify the underlying genetic cause of adFNDI in a Swedish family, and to test the hypothesis that the identified synonymous exonic variant in the AVP gene (c.324G>A) causes missplicing and endoplasmic reticulum (ER) retention of the prohormone. DESIGN/PATIENTS: Three affected family members were admitted for fluid deprivation test and dDAVP (1-deamino-8-d-arginine-vasopressin) challenge test. Direct sequencing of the AVP gene was performed in the affected subjects, and genotyping of the identified variant was performed in family members. The variant was examined by expression of AVP minigenes containing the entire coding regions as well as intron 2 of AVP. METHODS/RESULTS: Clinical tests revealed significant phenotypical variation with both complete and partial adFNDI phenotype. DNA analysis revealed a synonymous c.324G>A substitution in one allele of the AVP gene in affected family members only. Cellular studies revealed both normally spliced and misspliced pre-mRNA in cells transfected with the AVP c.324G>A minigene. Confocal laser scanning microscopy showed collective localization of the variant prohormone to ER and vesicular structures at the tip of cellular processes. CONCLUSION: We identified a synonymous variant affecting the second nucleotide of exon 3 in the AVP gene (c.324G>A) in a family in which adFNDI segregates. Notably, we showed that this variant causes partial missplicing of pre-mRNA, resulting in accumulation of the variant prohormone in ER. Our study suggests that even a small amount of aberrant mRNA might be sufficient to disturb cellular function, resulting in adFNDI.

6.
Scand J Clin Lab Invest ; 78(1-2): 114-119, 2018 Feb - Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29361858

RESUMO

The synthetic AVP analogue 1-desamino-8-d-arginine-vasopressin (dDAVP) is used for treatment of polyuric disorders. Lack of commercially available assays limits the usefulness of dDAVP as a diagnostic tool in the assessment of renal concentrating capacity. We aimed to develop a specific radioimmunoassay (RIA) for determination of plasma dDAVP (pdDAVP) in order to investigate the relationship between pdDAVP levels and urine osmolality (Uosm). Further, we aimed to determine the onset, duration, and maximum concentrating capacity following intravenous (i.v.) bolus dDAVP injection. The dDAVP assay was based on a well-established RIA for measurements of AVP. Fourteen healthy subjects (aged 15-18 years) participated. Blood and urine samples were collected prior to and after i.v. bolus of 0.03 µg/kg dDAVP. Diuresis and Uosm was measured for nine hours following dDAVP administration. PdDAVP and Uosm were analyzed.We established a specific RIA for the measurement of pdDAVP. All subjects reached maximal pdDAVP concentration (Cmax) 30 minutes following infusion, and a rise in Uosm after 60 minutes. Maximal Uosm varied between subjects, with no direct correlation to the achieved pdDAVP levels. We found no significant intra-individual variation between two dDAVP infusions and the effect was reproducible in terms of Cmax and maximal Uosm. We characterized the relationship between pdDAVP and Uosm after dDAVP bolus injection in healthy adolescents using our dDAVP assay. Maximal Uosm achieved correlated with the baseline Uosm levels and seemed unrelated to achieved pdDAVP levels. The urine concentrating response was maintained at least eight hours.


Assuntos
Desamino Arginina Vasopressina/administração & dosagem , Desamino Arginina Vasopressina/sangue , Rim/metabolismo , Administração Intravenosa , Adolescente , Humanos , Masculino , Concentração Osmolar
7.
Mol Neurobiol ; 55(1): 567-582, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27975171

RESUMO

A healthy lifestyle, including regular physical exercise, is generally believed to improve cognitive function and enhance neurogenesis. Such physical exercise-induced effects are associated with increased brain expression of neurotrophic and growth factors. In the present study, we investigated Bdnf, Igf-1, Fgf-2, Egf, and VegfA messenger RNA (mRNA) expression levels in the male rat hippocampus and frontal cortex after 2 weeks of voluntary physical exercise. Whereas the expression of Fgf-2 was upregulated in the hippocampus and prefrontal cortex by physical exercise, the expression levels of Bdnf transcript 1, Bdnf transcript 4, Igf-1, and VegfA were upregulated only in the hippocampus. We focused our subsequent analyses on the VegfA gene, which encodes vascular endothelial growth factor, a signaling molecule important for angiogenesis, vasculogenesis, and neurogenesis. To study the epigenetic mechanisms involved in the physical exercise-mediated induction of VegfA expression, we used oxidative and non-oxidative bisulfite pyrosequencing to analyze VegfA promoter DNA methylation and DNA hydroxymethylation. We observed discrete DNA hypomethylation at specific CpG sites in rats that engaged in physical exercise relative to sedentary rats. This is exemplified by a CpG site located within a VegfA promoter Sp1/Sp3 transcription factor recognition element. DNA hydroxymethylation was present at the VegfA promoter, but no differences in DNA hydroxymethylation were observed in rats that engaged in physical exercise relative to sedentary rats. Moreover, we observed increased Tet1 and decreased Dnmt3b mRNA expression in the hippocampi of rats that engaged in physical exercise. The presented results substantiate the involvement of epigenetics as a mediator of the beneficial effects of physical exercise and point to the importance of analyzing factors beyond Bdnf to delineate the mechanisms behind the functional impacts of physical exercise in mediating benefits to the brain.

8.
Neuroendocrinology ; 106(2): 167-186, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28494452

RESUMO

BACKGROUND/AIM: Variability in the severity and age at onset of autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI) may be associated with certain types of variants in the arginine vasopressin (AVP) gene. In this study, we aimed to describe a large family with an apparent predominant female occurrence of polyuria and polydipsia and to determine the underlying cause. METHODS: The family members reported their family demography and symptoms. Two subjects were diagnosed by fluid deprivation and dDAVP challenge tests. Eight subjects were tested genetically. The identified variant along with 3 previously identified variants in the AVP gene were investigated by heterologous expression in a human neuronal cell line (SH-SY5Y). RESULTS: Both subjects investigated clinically had a partial neurohypophyseal diabetes insipidus phenotype. A g.276_278delTCC variant in the AVP gene causing a Ser18del deletion in the signal peptide (SP) of the AVP preprohormone was perfectly co-segregating with the disease. When expressed in SH-SY5Y cells, the Ser18del variant along with 3 other SP variants (g.227G>A, Ser17Phe, and Ala19Thr) resulted in reduced AVP mRNA, impaired AVP secretion, and partial AVP prohormone degradation and retention in the endoplasmic reticulum. Impaired SP cleavage was demonstrated directly in cells expressing the Ser18del, g.227G>A, and Ala19Thr variants, using state-of-the-art mass spectrometry. CONCLUSION: Variants affecting the SP of the AVP preprohormone cause adFNDI with variable phenotypes by a mechanism that may involve impaired SP cleavage combined with effects at the mRNA, protein, and cellular level.

9.
J Mol Neurosci ; 62(2): 142-153, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28439815

RESUMO

Physical exercise results in the increased expression of neurotrophic factors and the subsequent induction of signal transduction cascades with a positive impact on neuronal functions. In this study, we used a voluntary physical exercise rat model to determine correlations in hippocampus mRNA expression of the neurotropic factors Bdnf, VegfA, and Igf1; their receptors TrkB, Igf1R, VegfR1, and VegfrR2; and downstream signal transducers Creb, Syn1, and Vgf. In hippocampi of physically exercised rats, the mRNA expression levels of Bdnf transcript 4 (Bdnf-t4), VegfA, and Igf1, as well as VegfR1, TrkB, Creb, Vgf, and Syn1, were increased. Bdnf-t4 mRNA expression positively correlated with mRNA expression of Creb, Vgf, and Syn1 in hippocampi of exercised rats. A correlation between Bdnf-t4 and Syn1 mRNA expression was also observed in hippocampi of sedentary rats. Igf1 and VegfA mRNA expression was positively correlated in hippocampi of both exercised and sedentary rats. But, neither Igf1 nor VegfA mRNA expression was correlated with the expression of Bdnf-t4 or the expression of the signal transducers Creb, Syn1, and Vgf. In hippocampi of exercised rats, Creb mRNA expression was positively correlated with TrkB, Syn1, and Vgf mRNA expression and with the correlation between Creb and Vgf mRNA expression also observed in hippocampi of sedentary rats. To examine for causality of the in vivo observed correlated mRNA expression levels between Bdnf-t4 and the other examined transcripts, we used nuclease-deactivated CRISPR-Cas9 fused with VP64 to induce mRNA expression of endogenous Bdnf-t4 in rat PC12 cells. Following Bdnf-t4 mRNA induction, we observed increased Creb mRNA expression. This in vitro result is in accordance with the in vivo results and supports that under specified conditions, an increase in Creb mRNA expression can be a downstream signal transduction event due to induction of endogenous Bdnf mRNA expression.


Assuntos
Hipocampo/metabolismo , Fatores de Crescimento Neural/metabolismo , Condicionamento Físico Animal , RNA Mensageiro/genética , Transdução de Sinais , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células HEK293 , Hipocampo/fisiologia , Humanos , Masculino , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Células PC12 , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo
10.
Stem Cell Res ; 19: 37-42, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28413003

RESUMO

Autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI) is caused by variants in the arginine vasopressin (AVP) gene. Here we report the generation of induced pluripotent stem cells (iPSCs) from a 42-year-old man carrying an adFNDI causing variant in exon 1 of the AVP gene using lentivirus-mediated nuclear reprogramming. The iPSCs carried the expected variant in the AVP gene. Furthermore, the iPSCs expressed pluripotency markers; displayed in vitro differentiation potential to the three germ layers and had a normal karyotype consistent with the original fibroblasts. This iPSC line is useful in future studies focusing on the pathogenesis of adFNDI.


Assuntos
Diabetes Insípido Neurogênico/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Adulto , Arginina Vasopressina/genética , Arginina Vasopressina/metabolismo , Sequência de Bases , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Diabetes Insípido Neurogênico/metabolismo , Corpos Embrioides/citologia , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cariótipo , Lentivirus/genética , Masculino , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Neurobiol Learn Mem ; 141: 44-52, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28341151

RESUMO

Schizophrenia is a debilitating brain disorder characterized by disturbances of emotion, perception and cognition. Cognitive impairments predict functional outcome in schizophrenia and are detectable even in the prodromal stage of the disorder. However, our understanding of the underlying neurobiology is limited and procognitive treatments remain elusive. We recently demonstrated that mice heterozygous for an inactivated allele of the schizophrenia-associated Brd1 gene (Brd1+/- mice) display behaviors reminiscent of schizophrenia, including impaired social cognition and long-term memory. Here, we further characterize performance of these mice by following the preclinical guidelines recommended by the 'Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS)' and 'Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS)' initiatives to maximize translational value. Brd1+/- mice exhibit relational encoding deficits, compromised working and long term memory, as well as impaired executive cognitive functioning with cognitive behaviors relying on medial prefrontal cortex being particularly affected. Akin to patients with schizophrenia, the cognitive deficits displayed by Brd1+/- mice are not global, but selective. Our results underline the value of Brd1+/- mice as a promising tool for studying the neurobiology of cognitive deficits in schizophrenia.


Assuntos
Transtornos Cognitivos/genética , Cognição/fisiologia , Função Executiva/fisiologia , Histona Acetiltransferases/genética , Esquizofrenia/genética , Alelos , Animais , Comportamento Animal/fisiologia , Transtornos Cognitivos/fisiopatologia , Modelos Animais de Doenças , Heterozigoto , Masculino , Memória de Longo Prazo/fisiologia , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Knockout , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/fisiopatologia
12.
PLoS One ; 12(1): e0170121, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28095495

RESUMO

The bromodomain containing 1 gene, BRD1 is essential for embryogenesis and CNS development. It encodes a protein that participates in histone modifying complexes and thereby regulates the expression of a large number of genes. Genetic variants in the BRD1 locus show association with schizophrenia and bipolar disorder and risk alleles in the promoter region correlate with reduced BRD1 expression. Insights into the transcriptional regulation of BRD1 and the pathogenic mechanisms associated with BRD1 risk variants, however, remain sparse. By studying transcripts in human HeLa and SH-SY5Y cells we provide evidence for differences in relative expression of BRD1 transcripts with three alternative 5' UTRs (exon 1C, 1B, and 1A). We further show that expression of these transcript variants covaries negatively with DNA methylation proportions in their upstream promoter regions suggesting that promoter usage might be regulated by DNA methylation. In line with findings that the risk allele of the rs138880 SNP in the BRD1 promoter region correlates with reduced BRD1 expression, we find that it is also associated with moderate regional BRD1 promoter hypermethylation in both adipose tissue and blood. Importantly, we demonstrate by inspecting available DNA methylation and expression data that these regions undergo changes in methylation during fetal brain development and that differences in their methylation proportions in fetal compared to postnatal frontal cortex correlate significantly with BRD1 expression. These findings suggest that BRD1 may be dysregulated in both the developing and mature brain of risk allele carriers. Finally, we demonstrate that commonly used mood stabilizers Lithium, Valproate, and Carbamazepine affect the expression of BRD1 in SH-SY5Y cells. Altogether this study indicates a link between genetic risk and epigenetic dysregulation of BRD1 which raises interesting perspectives for targeting the mechanisms pharmacologically.


Assuntos
Adenocarcinoma/genética , Metilação de DNA , Neuroblastoma/genética , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Esquizofrenia/genética , Adenocarcinoma/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Feto/metabolismo , Feto/patologia , Regulação da Expressão Gênica , Predisposição Genética para Doença , Células HeLa , Humanos , Neuroblastoma/patologia , Esquizofrenia/patologia
13.
Genome Med ; 8(1): 53, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27142060

RESUMO

BACKGROUND: The bromodomain containing 1 (BRD1) gene has been implicated with transcriptional regulation, brain development, and susceptibility to schizophrenia and bipolar disorder. To advance the understanding of BRD1 and its role in mental disorders, we characterized the protein and chromatin interactions of the BRD1 isoforms, BRD1-S and BRD1-L. METHODS: Stable human cell lines expressing epitope tagged BRD1-S and BRD1-L were generated and used as discovery systems for identifying protein and chromatin interactions. Protein-protein interactions were identified using co-immunoprecipitation followed by mass spectrometry and chromatin interactions were identified using chromatin immunoprecipitation followed by next generation sequencing. Gene expression profiles and differentially expressed genes were identified after upregulating and downregulating BRD1 expression using microarrays. The presented functional molecular data were integrated with human genomic and transcriptomic data using available GWAS, exome-sequencing datasets as well as spatiotemporal transcriptomic datasets from the human brain. RESULTS: We present several novel protein interactions of BRD1, including isoform-specific interactions as well as proteins previously implicated with mental disorders. By BRD1-S and BRD1-L chromatin immunoprecipitation followed by next generation sequencing we identified binding to promoter regions of 1540 and 823 genes, respectively, and showed correlation between BRD1-S and BRD1-L binding and regulation of gene expression. The identified BRD1 interaction network was found to be predominantly co-expressed with BRD1 mRNA in the human brain and enriched for pathways involved in gene expression and brain function. By interrogation of large datasets from genome-wide association studies, we further demonstrate that the BRD1 interaction network is enriched for schizophrenia risk. CONCLUSION: Our results show that BRD1 interacts with chromatin remodeling proteins, e.g. PBRM1, as well as histone modifiers, e.g. MYST2 and SUV420H1. We find that BRD1 primarily binds in close proximity to transcription start sites and regulates expression of numerous genes, many of which are involved with brain development and susceptibility to mental disorders. Our findings indicate that BRD1 acts as a regulatory hub in a comprehensive schizophrenia risk network which plays a role in many brain regions throughout life, implicating e.g. striatum, hippocampus, and amygdala at mid-fetal stages.


Assuntos
Encéfalo/metabolismo , Transtornos Mentais/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteoma/metabolismo , Encéfalo/crescimento & desenvolvimento , Linhagem Celular , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Espectrometria de Massas , Regiões Promotoras Genéticas , Isoformas de Proteínas/metabolismo , Proteoma/genética
14.
BMC Nephrol ; 16: 217, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26714855

RESUMO

BACKGROUND: Autosomal dominant inheritance of congenital nephrogenic diabetes insipidus (CNDI) is rare and usually caused by variations in the AQP2 gene. We have investigated the genetic and molecular background underlying symptoms of diabetes insipidus (DI) in a Swedish family with autosomal dominant inheritance of the condition. METHODS: The proband and her father were subjected to water deprivation testing and direct DNA sequencing of the coding regions of the AQP2 and AVP genes. Madin-Darby canine kidney (MDCK) cells stably expressing AQP2 variant proteins were generated by lentiviral gene delivery. Localization of AQP2 variant proteins in the cells under stimulated and unstimulated conditions was analyzed by means of immunostaining and confocal laser scanning microscopy. Intracellular trafficking of AQP2 variant proteins was studied using transient expression of mutant dynamin2-K44A-GFP protein and AQP2 variant protein phosphorylation levels were assessed by Western blotting analysis. RESULTS: Clinical and genetic data suggest that the proband and her father suffer from partial nephrogenic DI due to a variation (g.4807C > T) in the AQP2 gene. The variation results in substitution of arginine-254 to tryptophan (p.R254W) in AQP2. Analysis of MDCK cells stably expressing AQP2 variant proteins revealed disabled phosphorylation, impaired trafficking and intracellular accumulation of AQP2-R254W protein. Notably, blocking of the endocytic pathway demonstrated impairment of AQP2-R254W to reach the cell surface. CONCLUSIONS: Partial CNDI in the Swedish family is caused by an AQP2 variation that seems to disable the encoded AQP2-R254W protein to reach the subapical vesicle population as well as impairing its phosphorylation at S256. The AQP2-R254W protein is thus unable to reach the plasma membrane to facilitate AVP mediated urine concentration.


Assuntos
Aquaporina 2/genética , Diabetes Insípido Nefrogênico/genética , Aquaporina 2/fisiologia , Feminino , Humanos , Lactente , Masculino , Mutação , Linhagem , Transporte Proteico
15.
BMC Genomics ; 16: 548, 2015 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-26208977

RESUMO

BACKGROUND: Massively parallel cDNA sequencing (RNA-seq) experiments are gradually superseding microarrays in quantitative gene expression profiling. However, many biologists are uncertain about the choice of differentially expressed gene (DEG) analysis methods and the validity of cost-saving sample pooling strategies for their RNA-seq experiments. Hence, we performed experimental validation of DEGs identified by Cuffdiff2, edgeR, DESeq2 and Two-stage Poisson Model (TSPM) in a RNA-seq experiment involving mice amygdalae micro-punches, using high-throughput qPCR on independent biological replicate samples. Moreover, we sequenced RNA-pools and compared their results with sequencing corresponding individual RNA samples. RESULTS: False-positivity rate of Cuffdiff2 and false-negativity rates of DESeq2 and TSPM were high. Among the four investigated DEG analysis methods, sensitivity and specificity of edgeR was relatively high. We documented the pooling bias and that the DEGs identified in pooled samples suffered low positive predictive values. CONCLUSIONS: Our results highlighted the need for combined use of more sensitive DEG analysis methods and high-throughput validation of identified DEGs in future RNA-seq experiments. They indicated limited utility of sample pooling strategies for RNA-seq in similar setups and supported increasing the number of biological replicate samples.


Assuntos
DNA Complementar/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA , Animais , Camundongos , Software
16.
Bipolar Disord ; 17(2): 205-11, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25053281

RESUMO

OBJECTIVES: Breakpoints of chromosomal abnormalities facilitate identification of novel candidate genes for psychiatric disorders. Genome-wide significant evidence supports the linkage between chromosome 17q25.3 and bipolar disorder (BD). Co-segregation of translocation t(9;17)(q33.2;q25.3) with psychiatric disorders has been reported. We aimed to narrow down these chromosomal breakpoint regions and to investigate the associations between single nucleotide polymorphisms within these regions and BD as well as schizophrenia (SZ) in large genome-wide association study samples. METHODS: We cross-linked Danish psychiatric and cytogenetic case registers to identify an individual with both t(9;17)(q33.2;q25.3) and BD. Fluorescent in situ hybridization was employed to map the chromosomal breakpoint regions of this proband. We accessed the Psychiatric Genomics Consortium BD (n = 16,731) and SZ (n = 21,856) data. Genetic associations between these disorders and single nucleotide polymorphisms within these breakpoint regions were analysed by BioQ, FORGE, and RegulomeDB programmes. RESULTS: Four protein-coding genes [coding for (endonuclease V (ENDOV), neuronal pentraxin I (NPTX1), ring finger protein 213 (RNF213), and regulatory-associated protein of mammalian target of rapamycin (mTOR) (RPTOR)] were found to be located within the 17q25.3 breakpoint region. NPTX1 was significantly associated with BD (p = 0.004), while ENDOV was significantly associated with SZ (p = 0.0075) after Bonferroni correction. CONCLUSIONS: Prior linkage evidence and our findings suggest NPTX1 as a novel candidate gene for BD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Transtorno Bipolar/genética , Proteína C-Reativa/genética , Desoxirribonuclease (Dímero de Pirimidina)/genética , Proteínas do Tecido Nervoso/genética , Esquizofrenia/genética , Ubiquitina-Proteína Ligases/genética , Adenosina Trifosfatases , Cromossomos Humanos Par 17/genética , Cromossomos Humanos Par 9/genética , Família , Ligação Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Hibridização in Situ Fluorescente , Polimorfismo de Nucleotídeo Único , Proteína Regulatória Associada a mTOR , Translocação Genética/genética
17.
J Clin Invest ; 123(11): 4667-80, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24084737

RESUMO

Type 2 diabetes is characterized by insulin resistance and mitochondrial dysfunction in classical target tissues such as muscle, fat, and liver. Using a murine model of type 2 diabetes, we show that there is hypothalamic insulin resistance and mitochondrial dysfunction due to downregulation of the mitochondrial chaperone HSP60. HSP60 reduction in obese, diabetic mice was due to a lack of proper leptin signaling and was restored by leptin treatment. Knockdown of Hsp60 in a mouse hypothalamic cell line mimicked the mitochondrial dysfunction observed in diabetic mice and resulted in increased ROS production and insulin resistance, a phenotype that was reversed with antioxidant treatment. Mice with a heterozygous deletion of Hsp60 exhibited mitochondrial dysfunction and hypothalamic insulin resistance. Targeted acute downregulation of Hsp60 in the hypothalamus also induced insulin resistance, indicating that mitochondrial dysfunction can cause insulin resistance in the hypothalamus. Importantly, type 2 diabetic patients exhibited decreased expression of HSP60 in the brain, indicating that this mechanism is relevant to human disease. These data indicate that leptin plays an important role in mitochondrial function and insulin sensitivity in the hypothalamus by regulating HSP60. Moreover, leptin/insulin crosstalk in the hypothalamus impacts energy homeostasis in obesity and insulin-resistant states.


Assuntos
Chaperonina 60/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Linhagem Celular , Chaperonina 60/deficiência , Chaperonina 60/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Obesidade/metabolismo , Estresse Oxidativo , Transdução de Sinais
18.
Neurobiol Dis ; 54: 12-23, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23466696

RESUMO

Cells rely on efficient protein quality control systems (PQCs) to maintain proper activity of mitochondrial proteins. As part of this system, the mitochondrial chaperone Hsp60 assists folding of matrix proteins and it is an essential protein in all organisms. Mutations in Hspd1, the gene encoding Hsp60, are associated with two human inherited diseases of the nervous system, a dominantly inherited form of spastic paraplegia (SPG13) and an autosomal recessively inherited white matter disorder termed MitCHAP60 disease. Although the connection between mitochondrial failure and neurodegeneration is well known in many neurodegenerative disorders, such as Huntington's disease, Parkinson's disease, and hereditary spastic paraplegia, the molecular basis of the neurodegeneration associated with these diseases is still ill-defined. Here, we investigate mice heterozygous for a knockout allele of the Hspd1 gene encoding Hsp60. Our results demonstrate that Hspd1 haploinsufficiency is sufficient to cause a late onset and slowly progressive deficit in motor functions in mice. We furthermore emphasize the crucial role of the Hsp60 chaperone in mitochondrial function by showing that the motor phenotype is associated with morphological changes of mitochondria, deficient ATP synthesis, and in particular, a defect in the assembly of the respiratory chain complex III in neuronal tissues. In the current study, we propose that our heterozygous Hsp60 mouse model is a valuable model system for the investigation of the link between mitochondrial dysfunction and neurodegeneration.


Assuntos
Chaperonina 60/deficiência , Modelos Animais de Doenças , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/deficiência , Doença dos Neurônios Motores/fisiopatologia , Animais , Western Blotting , Chaperonina 60/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Doença dos Neurônios Motores/genética , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Pituitary ; 16(2): 152-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22695750

RESUMO

Familial neurohypophyseal diabetes insipidus (FNDI) is mostly an autosomal dominant inherited disorder presenting with severe polydipsia and polyuria typically in early childhood. To date, 69 different variations in the AVP gene encoding the AVP prohormone have been identified in autosomal dominant FNDI (adFNDI). In this study we present a family of seven generations, in which a novel variation in the AVP gene seems to cause adFNDI. Clinical assessment by 24 h urine collection, water deprivation test, desmopressin (dDAVP) challenge, and magnetic resonance imaging (MRI) of the posterior pituitary are presented. The diagnosis of adFNDI was confirmed by direct DNA sequence analysis of the AVP gene. Inheritance pattern and clinical history clearly pointed towards adFNDI. Inability of concentrating urine upon dehydration was demonstrated by a water deprivation test, and neurohypophyseal diabetes insipidus was strongly suspected after dDAVP administration, during which renal concentration ability quadrupled. MRI revealed a very weak pituitary "bright spot" in each of six subjects and a further reduction in the size of the neurohypophysis in a 7-year follow-up MRI scan in one subject. DNA sequence analysis revealed heterozygousity for a novel g.1785T > C gene variation predicting a p.Leu63Pro substitution in four affected subjects. Genetic testing in the diagnostic evaluation of families in which diabetes insipidus segregates is highly recommended in that interpretation of clinical assessments can be difficult. Furthermore, presymptomatic diagnosis can ease the parental concern of the carrier status of their offspring, and also avoid unnecessary surveillance of those being unaffected.


Assuntos
Diabetes Insípido Neurogênico/genética , Neurofisinas/genética , Precursores de Proteínas/genética , Vasopressinas/genética , Feminino , Heterozigoto , Humanos , Itália , Imagem por Ressonância Magnética , Masculino , Linhagem , Análise de Sequência de DNA
20.
Acta Paediatr ; 101(11): e519-25, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22931312

RESUMO

UNLABELLED: Isolated aldosterone synthase deficiency can be the source of life-threatening salt wasting and failure to thrive in infancy. We studied an infant with failure to thrive and persistent hyponatremia despite oral sodium supplementation. Initial analyses revealed highly elevated plasma renin but normal values of plasma aldosterone. The biochemical diagnosis of corticosterone methyl oxidase deficiency type II was established by multisteroid analysis, revealing a pathognomonic pattern with a highly elevated ratio of 18-OH-corticosterone to aldosterone. This reflects an enzymatic defect in the aldosterone synthase that is responsible for the terminal steps in the aldosterone biosynthesis. Molecular genetic analysis supported the diagnosis revealing homozygosity for a pathogenic c.554C>T (p.T185I) variation in exon 3 of the CYP11B2 gene encoding aldosterone synthase. Homozygosity for two other polymorphic variations c.504C>T (p.F168F) and c.518A>G (p.K173R) were identified as well. Treatment with fludrocortisone resulted in catch-up growth. Discontinuation of treatment at the age of 9 years was later possible without any clinical or biochemical deterioration. CONCLUSIONS: Isolated deficiency in aldosterone biosynthesis should be considered in neonates and infants with failure to thrive and salt wasting. Normal levels of plasma aldosterone compared with highly elevated levels of plasma renin indicate an impaired aldosterone biosynthesis and suggest the disorder. Recognition of its existence is important as fludrocortisone replacement therapy effectively normalizes sodium balance and growth.


Assuntos
Citocromo P-450 CYP11B2/genética , Homozigoto , Hipoaldosteronismo/genética , Mutação Puntual , Citocromo P-450 CYP11B2/deficiência , Feminino , Marcadores Genéticos , Humanos , Hipoaldosteronismo/diagnóstico , Lactente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA