Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 143: 105983, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32736159

RESUMO

BACKGROUND: The association between air pollution and mortality is well established, yet some uncertainties remain: there are few studies that account for road traffic noise exposure or that consider in detail the shape of the exposure-response function for cause-specific mortality outcomes, especially at low-levels of exposure. OBJECTIVES: We examined the association between long-term exposure to particulate matter [(PM) with a diameter of <2.5 µm (PM2.5), <10 µm (PM10)], and nitrogen dioxide (NO2) and total and cause-specific mortality, accounting for road traffic noise. METHODS: We used data on 24,541 females (age > 44 years) from the Danish Nurse Cohort, who were recruited in 1993 or 1999, and linked to the Danish Causes of Death Register for follow-up on date of death and its cause, until the end of 2013. Annual mean concentrations of PM2.5, PM10, and NO2 at the participants' residences since 1990 were estimated using the Danish DEHM/UBM/AirGIS dispersion model, and annual mean road traffic noise levels (Lden) were estimated using the Nord2000 model. We examined associations between the three-year running mean of PM2.5, PM10, and NO2 with total and cause-specific mortality by using time-varying Cox Regression models, adjusting for individual characteristics and residential road traffic noise. RESULTS: During the study period, 3,708 nurses died: 843 from cardiovascular disease (CVD), 310 from respiratory disease (RD), and 64 from diabetes. In the fully adjusted models, including road traffic noise, we detected associations of three-year running mean of PM2.5 with total (hazard ratio; 95% confidence interval: 1.06; 1.01-1.11), CVD (1.14; 1.03-1.26), and diabetes mortality (1.41; 1.05-1.90), per interquartile range of 4.39 µg/m3. In a subset of the cohort exposed to PM2.5 < 20 µg/m3, we found even stronger association with total (1.19; 1.11-1.27), CVD (1.27; 1.01-1.46), RD (1.27; 1.00-1.60), and diabetes mortality (1.44; 0.83-2.48). We found similar associations with PM10 and none with NO2. All associations were robust to adjustment for road traffic noise. DISCUSSION: Long-term exposure to low-levels of PM2.5 and PM10 is associated with total mortality, and mortality from CVD, RD, and diabetes. Associations were even stronger at the PM2.5 levels below EU limit values and were independent of road traffic noise.

2.
Sci Total Environ ; 742: 140677, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32721756

RESUMO

Dechlorane Plus (DP) is a chlorinated flame retardant applied in parallel to or as a replacement product for regulated flame retardants. Detection of DP in environmental media all over the world in recent years necessitates the development of detailed global emission estimates for environmental model studies. Based on production, usage and disposal data two global atmospheric emission scenarios were made with a detailed geographical distribution. The total DP emission is estimated to be 0.02 t/year and 3.2 t/year in a low and high emission scenario, respectively, reflecting the uncertainties in production volumes and emission factors. The emission estimates are tested by implementation in the Danish Eulerian Hemispheric Model, an advanced chemistry-transport model. An evaluation against measurements in the Arctic from the early 2010s, considered to represent background concentrations, shows that the predicted concentration range for the high emission scenario is in line with the measured range, whereas the predicted concentrations for the low emission estimate are more than a factor of 100 lower than the measurements, rendering the high emission estimate most probable.

3.
Environ Health ; 19(1): 81, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641060

RESUMO

BACKGROUND: Inconclusive evidence has suggested a possible link between air pollution and central nervous system (CNS) tumors. We investigated a range of air pollutants in relation to types of CNS tumors. METHODS: We identified all (n = 21,057) intracranial tumors in brain, meninges and cranial nerves diagnosed in Denmark between 1989 and 2014 and matched controls on age, sex and year of birth. We established personal 10-year mean residential outdoor exposure to particulate matter < 2.5 µm (PM2.5), nitrous oxides (NOX), primary emitted black carbon (BC) and ozone. We used conditional logistic regression to calculate odds ratios (OR) linearly (per interquartile range (IQR)) and categorically. We accounted for personal income, employment, marital status, use of medication as well as socio-demographic conditions at area level. RESULTS: Malignant tumors of the intracranial CNS was associated with BC (OR: 1.034, 95%CI: 1.005-1.065 per IQR. For NOx the OR per IQR was 1.026 (95%CI: 0.998-1.056). For malignant non-glioma tumors of the brain we found associations with PM2.5 (OR: 1.267, 95%CI: 1.053-1.524 per IQR), BC (OR: 1.049, 95%CI: 0.996-1.106) and NOx (OR: 1.051, 95% CI: 0.996-1.110). CONCLUSION: Our results suggest that air pollution is associated with malignant intracranial CNS tumors and malignant non-glioma of the brain. However, additional studies are needed.

4.
Environ Int ; 142: 105891, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32593048

RESUMO

Ambient air pollution has been linked to stroke, but few studies have examined in detail stroke subtypes and confounding by road traffic noise, which was recently associated with stroke. Here we examined the association between long-term exposure to air pollution and incidence of stroke (overall, ischemic, hemorrhagic), adjusting for road traffic noise. In a nationwide Danish Nurse Cohort consisting of 23,423 nurses, recruited in 1993 or 1999, we identified 1,078 incident cases of stroke (944 ischemic and 134 hemorrhagic) up to December 31, 2014, defined as first-ever hospital contact. The full residential address histories since 1970 were obtained for each participant and the annual means of air pollutants (particulate matter with diameter < 2.5 µm and < 10 µm (PM2.5 and PM10), nitrogen dioxide (NO2), nitrogen oxides (NOx)) and road traffic noise were determined using validated models. Time-varying Cox regression models were used to estimate hazard ratios (HR) (95% confidence intervals (CI)) for the associations of one-, three, and 23-year running mean of air pollutants with stroke adjusting for potential confounders and noise. In fully adjusted models, the HRs (95% CI) per interquartile range increase in one-year running mean of PM2.5 and overall, ischemic, and hemorrhagic stroke were 1.12 (1.01-1.25), 1.13 (1.01-1.26), and 1.07 (0.80-1.44), respectively, and remained unchanged after adjustment for noise. Long-term exposure to ambient PM2.5 was associated with the risk of stroke independent of road traffic noise.

5.
Int J Cancer ; 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32175588

RESUMO

There is limited evidence regarding a possible association between exposure to ambient air pollutants and the risk of non-Hodgkin lymphoma (NHL). Previous epidemiological studies have relied on crude estimations for air pollution exposure and/or small numbers of NHL cases. The objective of our study was to analyze this association based on air pollution modeled at the address level and NHL cases identified from the nationwide Danish Cancer Registry. We identified 20,874 incident NHL cases diagnosed between 1989 and 2014 and randomly selected 41,749 controls matched on age and gender among the entire Danish population. We used conditional logistic regression to estimate odds ratios (ORs) and adjusted for individual and neighborhood level sociodemographic variables. There was no association between exposure to PM2.5 , BC, O3 , SO2 or NO2 and overall risk of NHL but several air pollutants were associated with higher risk of follicular lymphoma, but statistically insignificant, for example, PM2.5 (OR = 1.15 per 5 µg/m3 ; 95% CI: 0.98-1.34) and lower risk for diffuse large B-cell lymphoma (OR = 0.92 per 5 µg/m3 ; 95% CI: 0.82-1.03). In this population-based study, we did not observe any convincing evidence of a higher overall risk for NHL with higher exposure to ambient air pollutants.

6.
Lancet Planet Health ; 4(2): e64-e73, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32112749

RESUMO

BACKGROUND: Ambient air pollution affects neurological function, but its association with schizophrenia risk is unclear. We investigated exposure to nitrogen oxides (NOX) as a whole and nitrogen dioxide (NO2) specifically, as well as PM10, and PM2·5, during childhood and subsequent schizophrenia risk. METHODS: People born in Denmark from 1980 to 1984 (N=230 844), who were residing in the country on their tenth birthday, and who had two Danish-born parents were followed-up from their tenth birthday until schizophrenia diagnosis or Dec 31, 2016. Mean daily exposure to each pollutant (NO2, NOX, PM10, and PM2·5) at all of an individual's residential addresses from birth to their tenth birthday was modelled. Incidence rate ratios, cumulative incidence, and population attributable risks were calculated using survival analysis techniques. FINDINGS: We analysed data between Aug 1, 2018, and Nov 15, 2019. Of 230 844 individuals included, 2189 cohort members were diagnosed with schizophrenia during follow-up. Higher concentrations of residential NO2 and NOX exposure during childhood were associated with subsequent elevated schizophrenia risk. People exposed to daily mean concentrations of more than 26·5 µg/m3 NO2 had a 1·62 (95% CI 1·41-1·87) times increased risk compared with people exposed to a mean daily concentration of less than 14·5 µg/m3. The absolute risks of developing schizophrenia by the age of 37 years when exposed to daily mean concentrations of more than 26·5 µg/m3 NO2 between birth and 10 years were 1·45% (95% CI 1·30-1·62%) for men and 1·03% (0·90-1·17) for women, whereas when exposed to a mean daily concentration of less than 14·5 µg/m3, the risk was 0·80% (95% CI 0·69-0·92%) for men and 0·67% (0·57-0·79) for women. Associations between exposure to PM2·5 or PM10 and schizophrenia risk were less consistent. INTERPRETATION: If the association between air pollution and schizophrenia is causal, reducing ambient air pollution including NO2 and NOX could have a potentially considerable effect on lowering schizophrenia incidence at the population level. Further investigations are necessary to establish a causal relationship. FUNDING: Lundbeck Foundation, Stanley Medical Research Institute, European Research Council, NordForsk, Novo Nordisk Foundation, National Health and Medical Research Council, Danish National Research Foundation.

7.
Atmos Chem Phys ; 19(1): 181-204, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30828349

RESUMO

An accurate simulation of the absorption properties is key for assessing the radiative effects of aerosol on meteorology and climate. The representation of how chemical species are mixed inside the particles (the mixing state) is one of the major uncertainty factors in the assessment of these effects. Here we compare aerosol optical properties simulations over Europe and North America, coordinated in the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII), to 1 year of AERONET sunphotometer retrievals, in an attempt to identify a mixing state representation that better reproduces the observed single scattering albedo and its spectral variation. We use a single post-processing tool (FlexAOD) to derive aerosol optical properties from simulated aerosol speciation profiles, and focus on the absorption enhancement of black carbon when it is internally mixed with more scattering material, discarding from the analysis scenes dominated by dust. We found that the single scattering albedo at 440 nm (ω 0,440) is on average overestimated (underestimated) by 3-5 % when external (core-shell internal) mixing of particles is assumed, a bias comparable in magnitude with the typical variability of the quantity. The (unphysical) homogeneous internal mixing assumption underestimates ω 0,440 by ~ 14 %. The combination of external and core-shell configurations (partial internal mixing), parameterized using a simplified function of air mass aging, reduces the ω 0,440 bias to -1/-3 %. The black carbon absorption enhancement (E abs) in core-shell with respect to the externally mixed state is in the range 1.8-2.5, which is above the currently most accepted upper limit of ~ 1.5. The partial internal mixing reduces E abs to values more consistent with this limit. However, the spectral dependence of the absorption is not well reproduced, and the absorption Ångström exponent AAE 675 440 is overestimated by 70-120 %. Further testing against more comprehensive campaign data, including a full characterization of the aerosol profile in terms of chemical speciation, mixing state, and related optical properties, would help in putting a better constraint on these calculations.

8.
Atmos Chem Phys ; 18(14): 10199-10218, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30450115

RESUMO

The evaluation and intercomparison of air quality models is key to reducing model errors and uncertainty. The projects AQMEII3 and EURODELTA-Trends, in the framework of the Task Force on Hemispheric Transport of Air Pollutants and the Task Force on Measurements and Modelling, respectively (both task forces under the UNECE Convention on the Long Range Transport of Air Pollution, LTRAP), have brought together various regional air quality models to analyze their performance in terms of air concentrations and wet deposition, as well as to address other specific objectives. This paper jointly examines the results from both project communities by intercomparing and evaluating the deposition estimates of reduced and oxidized nitrogen (N) and sulfur (S) in Europe simulated by 14 air quality model systems for the year 2010. An accurate estimate of deposition is key to an accurate simulation of atmospheric concentrations. In addition, deposition fluxes are increasingly being used to estimate ecological impacts. It is therefore important to know by how much model results differ and how well they agree with observed values, at least when comparison with observations is possible, such as in the case of wet deposition. This study reveals a large variability between the wet deposition estimates of the models, with some performing acceptably (according to previously defined criteria) and others underestimating wet deposition rates. For dry deposition, there are also considerable differences between the model estimates. An ensemble of the models with the best performance for N wet deposition was made and used to explore the implications of N deposition in the conservation of protected European habitats. Exceedances of empirical critical loads were calculated for the most common habitats at a resolution of 100 × 100 m2 within the Natura 2000 network, and the habitats with the largest areas showing exceedances are determined. Moreover, simulations with reduced emissions in selected source areas indicated a fairly linear relationship between reductions in emissions and changes in the deposition rates of N and S. An approximate 20 % reduction in N and S deposition in Europe is found when emissions at a global scale are reduced by the same amount. European emissions are by far the main contributor to deposition in Europe, whereas the reduction in deposition due to a decrease in emissions in North America is very small and confined to the western part of the domain. Reductions in European emissions led to substantial decreases in the protected habitat areas with critical load exceedances (halving the exceeded area for certain habitats), whereas no change was found, on average, when reducing North American emissions in terms of average values per habitat.

9.
Atmos Chem Phys ; 18: 2727-2744, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30972110

RESUMO

In this study we introduce a hybrid ensemble consisting of air quality models operating at both the global and regional scale. The work is motivated by the fact that these different types of models treat specific portions of the atmospheric spectrum with different levels of detail, and it is hypothesized that their combination can generate an ensemble that performs better than mono-scale ensembles. A detailed analysis of the hybrid ensemble is carried out in the attempt to investigate this hypothesis and determine the real benefit it produces compared to ensembles constructed from only global-scale or only regional-scale models. The study utilizes 13 regional and 7 global models participating in the Hemispheric Transport of Air Pollutants phase 2 (HTAP2)-Air Quality Model Evaluation International Initiative phase 3 (AQMEII3) activity and focuses on surface ozone concentrations over Europe for the year 2010. Observations from 405 monitoring rural stations are used for the evaluation of the ensemble performance. The analysis first compares the modelled and measured power spectra of all models and then assesses the properties of the mono-scale ensembles, particularly their level of redundancy, in order to inform the process of constructing the hybrid ensemble. This study has been conducted in the attempt to identify that the improvements obtained by the hybrid ensemble relative to the mono-scale ensembles can be attributed to its hybrid nature. The improvements are visible in a slight increase of the diversity (4 % for the hourly time series, 10 % for the daily maximum time series) and a smaller improvement of the accuracy compared to diversity. Root mean square error (RMSE) improved by 13-16 % compared to G and by 2-3 % compared to R. Probability of detection (POD) and false-alarm rate (FAR) show a remarkable improvement, with a steep increase in the largest POD values and smallest values of FAR across the concentration ranges. The results show that the optimal set is constructed from an equal number of global and regional models at only 15 % of the stations. This implies that for the majority of the cases the regional-scale set of models governs the ensemble. However given the high degree of redundancy that characterizes the regional-scale models, no further improvement could be expected in the ensemble performance by adding yet more regional models to it. Therefore the improvement obtained with the hybrid set can confidently be attributed to the different nature of the global models. The study strongly reaffirms the importance of an in-depth inspection of any ensemble of opportunity in order to extract the maximum amount of information and to have full control over the data used in the construction of the ensemble.

10.
Atmos Chem Phys ; 18(19): 13925-13945, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30800155

RESUMO

This study evaluates simulated vertical ozone profiles produced in the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3) against ozonesonde observations in North America for the year 2010. Four research groups from the United States (US) and Europe have provided modeled ozone vertical profiles to conduct this analysis. Because some of the modeling systems differ in their meteorological drivers, wind speed and temperature are also included in the analysis. In addition to the seasonal ozone profile evaluation for 2010, we also analyze chemically inert tracers designed to track the influence of lateral boundary conditions on simulated ozone profiles within the modeling domain. Finally, cases of stratospheric ozone intrusions during May-June 2010 are investigated by analyzing ozonesonde measurements and the corresponding model simulations at Intercontinental Chemical Transport Experiment Ozonesonde Network Study (IONS) experiment sites in the western United States. The evaluation of the seasonal ozone profiles reveals that, at a majority of the stations, ozone mixing ratios are underestimated in the 1-6 km range. The seasonal change noted in the errors follows the one seen in the variance of ozone mixing ratios, with the majority of the models exhibiting less variability than the observations. The analysis of chemically inert tracers highlights the importance of lateral boundary conditions up to 250 hPa for the lower-tropospheric ozone mixing ratios (0-2 km). Finally, for the stratospheric intrusions, the models are generally able to reproduce the location and timing of most intrusions but underestimate the magnitude of the maximum mixing ratios in the 2-6 km range and overestimate ozone up to the first kilometer possibly due to marine air influences that are not accurately described by the models. The choice of meteorological driver appears to be a greater predictor of model skill in this altitude range than the choice of air quality model.

11.
Atmos Chem Phys ; 18(23): 17157-17175, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31396266

RESUMO

Increasing emphasis has been placed on characterizing the contributions and the uncertainties of ozone imported from outside the US. In chemical transport models (CTMs), the ozone transported through lateral boundaries (referred to as LB ozone hereafter) undergoes a series of physical and chemical processes in CTMs, which are important sources of the uncertainty in estimating the impact of LB ozone on ozone levels at the surface. By implementing inert tracers for LB ozone, the study seeks to better understand how differing representations of physical processes in regional CTMs may lead to differences in the simulated LB ozone that eventually reaches the surface across the US. For all the simulations in this study (including WRF/CMAQ, WRF/CAMx, COSMO-CLM/CMAQ, and WRF/DEHM), three chemically inert tracers that generally represent the altitude ranges of the planetary boundary layer (BC1), free troposphere (BC2), and upper troposphere-lower stratosphere (BC3) are tracked to assess the simulated impact of LB specification. Comparing WRF/CAMx with WRF/CMAQ, their differences in vertical grid structure explain 10 %-60 % of their seasonally averaged differences in inert tracers at the surface. Vertical turbulent mixing is the primary contributor to the remaining differences in inert tracers across the US in all seasons. Stronger vertical mixing in WRF/CAMx brings more BC2 downward, leading to higher BCT (BCT = BC1+BC2+BC3) and BC2/BCT at the surface in WRF/CAMx. Meanwhile, the differences in inert tracers due to vertical mixing are partially counteracted by their difference in sub-grid cloud mixing over the southeastern US and the Gulf Coast region during summer. The process of dry deposition adds extra gradients to the spatial distribution of the differences in DM8A BCT by 5-10 ppb during winter and summer. COSMO-CLM/CMAQ and WRF/CMAQ show similar performance in inert tracers both at the surface and aloft through most seasons, which suggests similarity between the two models at process level. The largest difference is found in summer. Sub-grid cloud mixing plays a primary role in their differences in inert tracers over the southeastern US and the oceans in summer. Our analysis of the vertical profiles of inert tracers also suggests that the model differences in dry deposition over certain regions are offset by the model differences in vertical turbulent mixing, leading to small differences in inert tracers at the surface in these regions.

12.
Atmos Chem Phys ; 17(4): 3001-3054, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30147713

RESUMO

Through the comparison of several regional-scale chemistry transport modeling systems that simulate meteorology and air quality over the European and North American continents, this study aims at (i) apportioning error to the responsible processes using timescale analysis, (ii) helping to detect causes of model error, and (iii) identifying the processes and temporal scales most urgently requiring dedicated investigations. The analysis is conducted within the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII) and tackles model performance gauging through measurement-to-model comparison, error decomposition, and time series analysis of the models biases for several fields (ozone, CO, SO2, NO, NO2, PM10, PM2.5, wind speed, and temperature). The operational metrics (magnitude of the error, sign of the bias, associativity) provide an overallsense of model strengths and deficiencies, while apportioning the error to its constituent parts (bias, variance, and covariance) can help assess the nature and quality of the error. Each of the error components is analyzed independently and apportioned to specific processes based on the corresponding timescale (long scale, synoptic, diurnal, and intraday) using the error apportionment technique devised in the former phases of AQMEII. The application of the error apportionment method to the AQMEII Phase 3 simulations provides several key insights. In addition to reaffirming the strong impact of model inputs (emission and boundary conditions) and poor representation of the stable boundary layer on model bias, results also highlighted the high interdependencies among meteorological and chemical variables, as well as among their errors. This indicates that the evaluation of air quality model performance for individual pollutants needs to be supported by complementary analysis of meteorological fields and chemical precursors to provide results that are more insightful from a model development perspective. This will require evaluaion methods that are able to frame the impact on error of processes, conditions, and fluxes at the surface. For example, error due to emission and boundary conditions is dominant for primary species (CO, particulate matter (PM)), while errors due to meteorology and chemistry are most relevant to secondary species, such as ozone. Some further aspects emerged whose interpretation requires additional consideration, such as the uniformity of the synoptic error being region- and model-independent, observed for several pollutants; the source of unexplained variance for the diurnal component; and the type of error caused by deposition and at which scale.

13.
Int J Environ Res Public Health ; 12(9): 11254-68, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26378551

RESUMO

Mercury (Hg) is a global pollutant with adverse health effects on humans and wildlife. It is of special concern in the Arctic due to accumulation in the food web and exposure of the Arctic population through a rich marine diet. Climate change may alter the exposure of the Arctic population to Hg. We have investigated the effect of climate change on the atmospheric Hg transport to and deposition within the Arctic by making a sensitivity study of how the atmospheric chemistry-transport model Danish Eulerian Hemispheric Model (DEHM) reacts to climate change forcing. The total deposition of Hg to the Arctic is 18% lower in the 2090s compared to the 1990s under the applied Special Report on Emissions Scenarios (SRES-A1B) climate scenario. Asia is the major anthropogenic source area (25% of the deposition to the Arctic) followed by Europe (6%) and North America (5%), with the rest arising from the background concentration, and this is independent of the climate. DEHM predicts between a 6% increase (Status Quo scenario) and a 37% decrease (zero anthropogenic emissions scenario) in Hg deposition to the Arctic depending on the applied emission scenario, while the combined effect of future climate and emission changes results in up to 47% lower Hg deposition.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Mudança Climática , Monitoramento Ambiental/métodos , Mercúrio/análise , Modelos Químicos , Regiões Árticas , Humanos
14.
Environ Sci Technol ; 44(22): 8574-80, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20973542

RESUMO

We develop an improved treatment of the surface ocean in the GEOS-Chem global 3-D biogeochemical model for mercury (Hg). We replace the globally uniform subsurface ocean Hg concentrations used in the original model with basin-specific values based on measurements. Updated chemical mechanisms for Hg°/Hg(II) redox reactions in the surface ocean include both photochemical and biological processes, and we improved the parametrization of particle-associated Hg scavenging. Modeled aqueous Hg concentrations are consistent with limited surface water observations. Results more accurately reproduce high-observed MBL concentrations over the North Atlantic (NA) and the associated seasonal trends. High seasonal evasion in the NA is driven by inputs from Hg enriched subsurface waters through entrainment and Ekman pumping. Globally, subsurface waters account for 40% of Hg inputs to the ocean mixed layer, and 60% is from atmospheric deposition. Although globally the ocean is a net sink for 3.8 Mmol Hg y⁻¹, the NA is a net source to the atmosphere, potentially due to enrichment of subsurface waters with legacy Hg from historical anthropogenic sources.


Assuntos
Poluentes Atmosféricos/análise , Mercúrio/análise , Modelos Químicos , Água do Mar/química , Poluentes Químicos da Água/análise , Poluentes Atmosféricos/química , Oceano Atlântico , Atmosfera/química , Monitoramento Ambiental/métodos , Mercúrio/química , Poluentes Químicos da Água/química
15.
Environ Sci Technol ; 44(14): 5365-70, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20568739

RESUMO

Decamethylcyclopentasiloxane (D(5)) is a volatile compound used in personal care products that is released to the atmosphere in large quantities. Although D(5) is currently under consideration for regulation, there have been no field investigations of its atmospheric fate. We employed a recently developed, quality assured method to measure D(5) concentration in ambient air at a rural site in Sweden. The samples were collected with daily resolution between January and June 2009. The D(5) concentration ranged from 0.3 to 9 ng m(-3), which is 1-3 orders of magnitude lower than previous reports. The measured data were compared with D(5) concentrations predicted using an atmospheric circulation model that included both OH radical and D(5) chemistry. The model was parametrized using emissions estimates and physical chemical properties determined in laboratory experiments. There was good agreement between the measured and modeled D(5) concentrations. The results show that D(5) is clearly subject to long-range atmospheric transport, but that it is also effectively removed from the atmosphere via phototransformation. Atmospheric deposition has little influence on the atmospheric fate. The good agreement between the model predictions and the field observations indicates that there is a good understanding of the major factors governing D(5) concentrations in the atmosphere.


Assuntos
Poluentes Atmosféricos/química , Siloxanas/química , Atmosfera , Modelos Teóricos , Fatores de Tempo
16.
Scand J Infect Dis ; 41(10): 760-6, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19685375

RESUMO

Patients on antiretroviral therapy are reported to have an increased risk of cardiovascular disease. We aimed to investigate the effect of n-3 polyunsaturated fatty acids (n-3 PUFAs) on plasma lipids, lipoproteins and inflammatory markers in HIV-infected patients treated with antiretroviral therapy. We randomized 51 patients in a placebo-controlled, double-blind trial to receive either 2 capsules of Omacor twice daily or 2 capsules of placebo. Compliance was measured by determining levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in neutrophils. Plasma triglycerides were reduced in the n-3 PUFA group by 0.14 mmol/l after 12 weeks of treatment (n=26), while plasma triglycerides increased by 0.36 mmol/l in the control group (n=25). The difference between groups was significant, p=0.03. No significant effect of treatment was found for total cholesterol, high-density lipoprotein (HDL) or low-density lipoprotein (LDL) cholesterol or apolipoproteins. There was a significant increase in leukotriene B5 (LTB5) and LTB5/LTB4 ratio in the n-3 PUFA group compared to the control group. Baseline values for intercellular adhesion molecule-1 (ICAM), vascular cell adhesion molecule-1 (VCAM) and highly sensitive C-reactive protein (hsCRP) were comparable at baseline, and the intervention did not change these parameters significantly. The present study showed that treatment with n-3 PUFA slightly decreased plasma triglycerides and induced anti-inflammatory effects by increasing formation of anti-inflammatory LTB5.


Assuntos
Antirretrovirais/uso terapêutico , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Ácidos Graxos Ômega-3/administração & dosagem , Infecções por HIV/sangue , Infecções por HIV/tratamento farmacológico , Mediadores da Inflamação/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Lipoproteínas/sangue , Adulto , Antirretrovirais/efeitos adversos , Colesterol/sangue , Método Duplo-Cego , Combinação de Medicamentos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Placebos , Triglicerídeos/sangue
17.
Environ Sci Technol ; 42(8): 2943-8, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18497148

RESUMO

A dynamic snowpack module was implemented in the Danish Eulerian Hemispheric Model Persistant Organic Pollutants (DEHM-POP), an atmospheric chemistry-transport model designed to study the environmental fate of persistent organic pollutants in the Northern Hemisphere. The role of the snowpack on the fate of alpha-hexachlorocyclohexane (alpha-HCH) was investigated by making simulations both with and without the formation of a snowpack and comparing model results with data from 21 air monitoring sites. The inclusion of a dynamic snowpack module in the DEHM-POP model generally improves the fit between modeled and observed alpha-HCH air concentrations for the winter and spring seasons and the overall correlation coefficient between predicted and observed concentrations are improved at 8 of the sites. The predicted snowpack concentrations are in good agreement with the few available snow measurements from the Arctic. The presence of a snowpack increases surface boundary layer air concentrations of alpha-HCH at midlatitudes, while the effect is more pronounced in the Arctic due to the longer periods of snow cover. The results indicate that the snowpack module in DEHM-POP acts as a fast-exchanging temporary storage medium for alpha-HCH, as significant fractions were rapidly revolatilized back into the atmosphere following deposition with snowfall, although the current parametrization for vapor-exchange probably over emphasizes this process. Nonetheless, increased air concentrations observed between March and May ("spring maximum events"; SME) at several high latitude monitoring stations are also predicted by the model. The model results indicate that the SMEs are associated with the revolatilization of previously deposited chemical from the snowpack, following a reduction in the capacity of the snowpack to retain alpha-HCH with increasing temperatures toward the end of the winter period, rather than the actual melting of the snowpack. The SMEs are not predicted at all the Arctic monitoring sites by the model, and the significance of the snowpack in controlling these in the model is, therefore, open to question given the uncertainties in the snow-air partition coefficient (K(sa)) and the reliance of the model on a one-layer snowpack rather than a multilayered snowpack.


Assuntos
Poluentes Atmosféricos/análise , Hexaclorocicloexano/análise , Modelos Químicos , Neve , Simulação por Computador
18.
Int J Biometeorol ; 52(6): 453-62, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18095007

RESUMO

Current aerobiological research applies the hypothesis that the main source of atmospheric birch (Betula) pollen is forest trees. Our results indicate that the measured levels in Copenhagen are not only due to birch trees in Danish forests but that the urban areas also seem to be a significant source of birch pollen. A number of episodes in 2003 with enhanced pollen levels in Copenhagen seem to be associated with parks and gardens inside and just outside the city. Our results also indicate one long-range transport episode from remote sources in Poland and Germany. Finally, our results show that the pollen levels vary considerably over the day and geographically between Copenhagen and the city of Roskilde, 40 km away. We suggest, that these differences in time and space in the pollen levels are mapped using an integrated monitoring strategy.


Assuntos
Betula , Pólen , Atmosfera , Ritmo Circadiano , Dinamarca , Modelos Biológicos , Estações do Ano , Tempo (Meteorologia)
19.
Environ Sci Technol ; 40(8): 2644-52, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16683604

RESUMO

An arctic snow model was developed to predict the exchange of vapor-phase persistent organic pollutants between the atmosphere and the snowpack over a winter season. Using modeled meteorological data simulating conditions in the Canadian High Arctic, a single-layer snowpack was created on the basis of the precipitation rate, with the snow depth, snow specific surface area, density, and total surface area (TSA) evolving throughout the annual time series. TSA, an important parameter affecting the vapor-sorbed quantity of chemicals in snow, was within a factor of 5 of measured values. Net fluxes for fluorene, phenanthrene, PCB-28 and -52, and alpha- and gamma-HCH (hexachlorocyclohexane) were predicted on the basis of their wet deposition (snowfall) and vapor exchange between the snow and atmosphere. Chemical fluxes were found to be highly dynamic, whereby deposition was rapidly offset by evaporative loss due to snow settling (i.e., changes in TSA). Differences in chemical behavior over the course of the season (i.e., fluxes, snow concentrations) were largely dependent on the snow/air partition coefficients (K(sa)). Chemicals with relatively higher K(sa) values such as alpha- and gamma-HCH were efficiently retained within the snowpack until later in the season compared to fluorene, phenathrene, and PCB-28 and -52. Average snow and air concentrations predicted by the model were within a factor of 5-10 of values measured from arctic field studies, but tended to be overpredicted for those chemicals with higher K(sa) values (i.e., HCHs). Sensitivity analysis revealed that snow concentrations were more strongly influenced by K(sa) than either inclusion of wind ventilation of the snowpack or other changes in physical parameters. Importantly, the model highlighted the relevance of the arctic snowpack in influencing atmospheric concentrations. For the HCHs, evaporative fluxes from snow were more pronounced in April and May, toward the end of the winter, providing evidence that the snowpack plays an important role in influencing the seasonal increase in air concentrations for these compounds at this time of year.


Assuntos
Poluentes Atmosféricos/análise , Modelos Químicos , Neve/química , Poluentes Atmosféricos/química , Canadá , Fluorenos/análise , Fluorenos/química , Gases , Hidrocarbonetos Clorados/análise , Hidrocarbonetos Clorados/química , Fenantrenos/análise , Fenantrenos/química , Estações do Ano , Vento
20.
Environ Sci Technol ; 38(8): 2373-82, 2004 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15116843

RESUMO

Atmospheric mercury depletion episodes (AMDEs) were studied at Station Nord, Northeast Greenland, 81 degrees 36' N, 16 degrees 40' W, during the Arctic Spring. Gaseous elemental mercury (GEM) and ozone were measured starting from 1998 and 1999, respectively, until August 2002. GEM was measured with a TEKRAN 2735A automatic mercury analyzer based on preconcentration of mercury on a gold trap followed by detection using fluorescence spectroscopy. Ozone was measured by UV absorption. A scatter plot of GEM and ozone concentrations confirmed that also at Station Nord GEM and ozone are linearly correlated during AMDEs. The relationship between ozone and GEM is further investigated in this paper using basic reaction kinetics (i.e., Cl, ClO, Br, and BrO have been suggested as reactants for GEM). The analyses in this paper show that GEM in the Arctic troposphere most probably reacts with Br. On the basis of the experimental results of this paper and results from the literature, a simple parametrization for AMDE was included into the Danish Eulerian Hemispheric Model (DEHM). In the model, GEM is converted linearly to reactive gaseous mercury (RGM) over sea ice with temperature below -4 degrees C with a lifetime of 3 or 10 h. The new AMDE parametrization was used together with the general parametrization of mercury chemistry [Petersen, G.; Munthe, J.; Pleijel, K.; Bloxam, R.; Vinod Kumar, A. Atmos. Environ. 1998, 32, 829-843]. The obtained model results were compared with measurements of GEM at Station Nord. There was good agreement between the start and general features periods with AMDEs, although the model could not reproduce the fast concentration changes, and the correlation between modeled and measured values decreased from 2000 to 2001 and further in 2002. The modeled RGM concentrations over the Arctic in 2000 were found to agree well with the temporal and geographical variability of the boundary column of monthly average BrO observed by the GOME satellite. Scenario calculations were performed with and without AMDEs. For the area north of the Polar Circle, the mercury deposition increases from 89 tons/year for calculations without an AMDE to 208 tons/year with the AMDE. The 208 tons/year represent an upper limit for the mercury load to the Artic.


Assuntos
Poluentes Atmosféricos/análise , Sistemas de Informação Geográfica , Mercúrio/análise , Modelos Teóricos , Oxidantes Fotoquímicos/análise , Ozônio/análise , Regiões Árticas , Monitoramento Ambiental , Cinética , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA