Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Nature ; 602(7896): 216-217, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35140382
Phys Rev Lett ; 125(24): 247001, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33412040


High-temperature superconductivity emerges in many different quantum materials, often in regions of the phase diagram where the electronic kinetic energy is comparable to the electron-electron repulsion. Describing such intermediate-coupling regimes has proven challenging as standard perturbative approaches are inapplicable. Here, we employ quantum Monte Carlo methods to solve a multiband Hubbard model that does not suffer from the sign problem and in which only repulsive interband interactions are present. In contrast to previous sign-problem-free studies, we treat magnetic, superconducting, and charge degrees of freedom on an equal footing. We find an antiferromagnetic dome accompanied by a metal-to-insulator crossover line in the intermediate-coupling regime, with a smaller superconducting dome appearing in the metallic region. Across the antiferromagnetic dome, the magnetic fluctuations change from overdamped in the metallic region to propagating in the insulating region. Our findings shed new light on the intertwining between superconductivity, magnetism, and charge correlations in quantum materials.

Nat Phys ; 16(3): 346-350, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505513


The electronic nematic phase-in which electronic degrees of freedom lower the crystal rotational symmetry-is commonly observed in high-temperature superconductors. However, understanding the role of nematicity and nematic fluctuations in Cooper pairing is often made more complicated by the coexistence of other orders, particularly long-range magnetic order. Here we report the enhancement of superconductivity in a model electronic nematic system that is not magnetic, and show that the enhancement is directly born out of strong nematic fluctuations associated with a quantum phase transition. We present measurements of the resistance as a function of strain in Ba1-x Sr x Ni2As2 to show that strontium substitution promotes an electronically driven nematic order in this system. In addition, the complete suppression of that order to absolute zero temperature leads to an enhancement of the pairing strength, as evidenced by a sixfold increase in the superconducting transition temperature. The direct relation between enhanced pairing and nematic fluctuations in this model system, as well as the interplay with a unidirectional charge-density-wave order comparable to that found in the cuprates, offers a means to investigate the role of nematicity in strengthening superconductivity.

Phys Rev Lett ; 121(5): 057001, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30118255


Recent experiments in iron pnictide superconductors reveal that, as the putative magnetic quantum critical point is approached, different types of magnetic order coexist over a narrow region of the phase diagram. Although these magnetic configurations share the same wave vectors, they break distinct symmetries of the lattice. Importantly, the highest superconducting transition temperature takes place close to this proliferation of near-degenerate magnetic states. In this Letter, we employ a renormalization group calculation to show that such a behavior naturally arises due to the effects of spin-orbit coupling on the quantum magnetic fluctuations. Formally, the enhanced magnetic degeneracy near the quantum critical point is manifested as a stable Gaussian fixed point with a large basin of attraction. Implications of our findings to the superconductivity of the iron pnictides are also discussed.

Phys Rev Lett ; 116(16): 167001, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27152819


Pair-density-wave superconductivity constitutes a novel electronic condensate proposed to be realized in certain unconventional superconductors. Establishing its potential existence is important for our fundamental understanding of superconductivity in correlated materials. Here we compute the dynamical magnetic susceptibility in the presence of a pair-density-wave ordered state and study its fingerprints on the spin-wave spectrum including the neutron resonance. In contrast to the standard case of d-wave superconductivity, we show that the pair-density-wave phase exhibits neither a spin gap nor a magnetic resonance peak, in agreement with a recent neutron scattering experiment on underdoped La_{1.905}Ba_{0.095}CuO_{4} [Z. Xu et al., Phys. Rev. Lett. 113, 177002 (2014)].