Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Micromachines (Basel) ; 9(5)2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30424161


Transmembrane pressure across the glomerular filter barrier may underlie renal failure. However, studies of renal failure have been difficult owing to a lack of in vitro models to capture the transmembrane pressure in a controlled approach. Here we report a microfluidic platform of podocyte culture to investigate transmembrane pressure induced glomerular leakage. Podocytes, the glomerular epithelial cells essential for filtration function, were cultivated on a porous membrane supplied with transmembrane pressure ΔP. An anodic aluminum oxide membrane with collagen coating was used as the porous membrane, and the filtration function was evaluated using dextrans of different sizes. The results show that dextran in 20 kDa and 70 kDa can penetrate the podocyte membrane, whereas dextran in 500 kDa was blocked until ΔP ≥ 60 mmHg, which resembles the filtration function when ΔP was in the range of a healthy kidney (ΔP < 60 mmHg) as well as the hypertension-induced glomerular leakage (ΔP ≥ 60 mmHg). Additionally, analysis showed that synaptopodin and actin were also downregulated when ΔP > 30 mmHg, indicating that the dysfunction of renal filtration is correlated with the reduction of synaptopodin expression and disorganized actin cytoskeleton. Taking together, our microfluidic platform enables the investigation of transmembrane pressure in glomerular filter membrane, with potential implications for drug development in the future.

J Vis Exp ; (126)2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28809821


Artificial guidance for cellular alignment is a hot topic in the field of tissue engineering. Most of the previous research has investigated single strain-induced cellular alignment on a cell-laden hydrogel by using complex experimental processes and mass controlling systems, which are usually associated with contamination issues. Thus, in this article, we propose a simple approach to building a gradient static strain using a fluidic chip with a plastic PDMS cover and a UV transparent glass substrate for the stimulation of cellular behavior in a 3D hydrogel. Overloading photo-patternable cell prepolymer in the fluidic chamber can generate a convex curved PDMS membrane on the cover. After UV crosslinking, through a concentric circular micropattern under the curved PDMS membrane, and buffer washing, a microenvironment for investigating cell behaviors under a variety of gradient strains is self-established in a single fluidic chip, without external instruments. NIH3T3 cells were demonstrated after observing the change in the cellular alignment trend under geometry guidance, in cooperation with strain stimulation, which varied from 15 - 65% on hydrogels. After a 3-day incubation, the hydrogel geometry dominated the cell alignment under low compressive strain, where cells aligned along the hydrogel elongation direction under high compressive strain. Between these, the cells showed random alignment due to the dissipation of the radical guidance of hydrogel elongation and the geometry guidance of the patterned hydrogel.

Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Hidrogéis , Dispositivos Lab-On-A-Chip , Animais , Camundongos , Células NIH 3T3 , Engenharia Tecidual , Raios Ultravioleta