Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 357
Filtrar
1.
Epilepsia ; 2019 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-31587270

RESUMO

OBJECTIVE: Studies have found that affected individuals who believe the cause of their disorder is genetic may react in various ways, including optimism for improved treatments and pessimism due to perceived permanence of the condition. This study assessed the psychosocial impact of genetic attribution among people with epilepsy. METHODS: Study participants were 165 persons with epilepsy from multiplex epilepsy families who completed a self-administered survey. Psychosocial impact of epilepsy was assessed with the Impact of Epilepsy Scale, containing items about relationships, employment, overall health, self-esteem, and standard of living. Genetic attribution was assessed using a scale derived from three items asking about the role of genetics in causing epilepsy in the family, the chance of having an epilepsy-related mutation, and the influence of genetics in causing the participant's epilepsy. We estimated prevalence ratios (PRs) for impact of epilepsy above the median using Poisson regression with robust standard errors, adjusting for number of lifetime seizures and time since last seizure. RESULTS: Participants' age averaged 51 years; 87% were non-Hispanic white, 63% were women, and 54% were college graduates. The genetic attribution scale was significantly associated with having a high impact of epilepsy (adjusted PR = 1.4, 95% confidence interval = 1.07-1.91, P = .02). One of the three genetic attribution questions was also significantly associated with a high impact of epilepsy (belief that genetics had a big role in causing epilepsy in the family, adjusted PR = 1.8). SIGNIFICANCE: These findings reflect an association between the psychosocial impact of epilepsy and the belief that epilepsy has a genetic cause, among people with epilepsy in families containing multiple affected individuals. This association could arise either because belief in a genetic cause leads to increased psychosocial impacts, or because a greater psychosocial impact of epilepsy leads some to believe their epilepsy is genetic.

2.
Int J Mol Sci ; 20(20)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614475

RESUMO

Dysfunction of the cardiac sodium channel Nav1.5 (encoded by the SCN5A gene) is associated with arrhythmias and sudden cardiac death. SCN5A mutations associated with long QT syndrome type 3 (LQT3) lead to enhanced late sodium current and consequent action potential (AP) prolongation. Internalization and degradation of Nav1.5 is regulated by ubiquitylation, a post-translational mechanism that involves binding of the ubiquitin ligase Nedd4-2 to a proline-proline-serine-tyrosine sequence of Nav1.5, designated the PY-motif. We investigated the biophysical properties of the LQT3-associated SCN5A-p.Y1977N mutation located in the Nav1.5 PY-motif, both in HEK293 cells as well as in newly generated mice harboring the mouse homolog mutation Scn5a-p.Y1981N. We found that in HEK293 cells, the SCN5A-p.Y1977N mutation abolished the interaction between Nav1.5 and Nedd4-2, suppressed PY-motif-dependent ubiquitylation of Nav1.5, and consequently abrogated Nedd4-2 induced sodium current (INa) decrease. Nevertheless, homozygous mice harboring the Scn5a-p.Y1981N mutation showed no electrophysiological alterations nor changes in AP or (late) INa properties, questioning the in vivo relevance of the PY-motif. Our findings suggest the presence of compensatory mechanisms, with additional, as yet unknown, factors likely required to reduce the "ubiquitylation reserve" of Nav1.5. Future identification of such modulatory factors may identify potential triggers for arrhythmias and sudden cardiac death in the setting of LQT3 mutations.

3.
Genet Med ; 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31616070

RESUMO

The evolving evidence base for the interpretation of variants identified in genetic and genomic testing has presented the genetics community with the challenge of variant reinterpretation. In particular, it is unclear whether an ethical duty of periodic reinterpretation should exist, who should bear that duty, and what its dimensions should be. Based on an analysis of the ethical arguments for and against a duty to reinterpret, we conclude that a duty should be recognized. Most importantly, by virtue of ordering and conducting tests likely to produce data on variants that cannot be definitively interpreted today, the health-care system incurs a duty to reinterpret when more reliable data become available. We identify four elements of the proposed ethical duty: data storage, initiation of reinterpretation, conduct of reinterpretation, and patient recontact, and we identify the parties best situated to implement each component. We also consider the reasonable extent and duration of a duty, and the role of the patient's consent in the process, although we acknowledge that some details regarding procedures and funding still need to be addressed. The likelihood of substantial patient benefit from a systematic approach to reinterpretation suggests the importance for the genetics community to reach consensus on this issue.

4.
Cancer Res ; 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578201

RESUMO

While physical activity is associated with lower breast cancer risk for average-risk women, it is not known if this association applies to women at high familial/genetic risk. We examined the association of recreational physical activity (self-reported by questionnaire) with breast cancer risk using the Prospective Family Study Cohort (ProF-SC), which is enriched with women who have a breast cancer family history (N=15,550). We examined associations of adult and adolescent recreational physical activity (quintiles of age-adjusted total metabolic equivalents (METs) per week) with breast cancer risk using multivariable Cox proportional hazards regression, adjusted for demographics, lifestyle factors, and body mass index. We tested for multiplicative interactions of physical activity with predicted absolute breast cancer familial risk based on pedigree data and with BRCA1 and BRCA2 mutation status. Baseline recreational physical activity level in the highest 4 quintiles compared with the lowest quintile was associated with a 20% lower breast cancer risk (HR=0.80, 95% CI=0.68, 0.93). The association was not modified by familial risk or BRCA mutation status (p-interactions>0.05). No overall association was found for adolescent recreational physical activity. Recreational physical activity in adulthood may lower breast cancer risk for women across the spectrum of familial risk.

5.
J Natl Cancer Inst ; 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31584660

RESUMO

The performance of breast cancer risk models for women with a family history but negative BRCA1 and/or BRCA2 mutation test results is uncertain. We calculated the cumulative 10-year invasive breast cancer risk at cohort entry for 14,657 unaffected women (96.1% had an affected relative) not known to carry BRCA1 or BRCA2 mutations at baseline using three pedigree-based models (BOADICEA, BRCAPRO and IBIS). During follow-up, 482 women were diagnosed with invasive breast cancer. Mutation testing was conducted independent of incident cancers. All models under-predicted risk by 26.3-56.7% for women who tested negative but whose relatives had not been tested (N = 1,363; 63 breast cancers). While replication studies with larger sample sizes are needed, until these models are re-calibrated for women who test negative and have no relatives tested, caution should be used when considering changing the breast cancer risk management intensity of such women based on risk estimates from these models.

6.
Nat Commun ; 10(1): 4722, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624253

RESUMO

The genetic architecture of sporadic congenital heart disease (CHD) is characterized by enrichment in damaging de novo variants in chromatin-modifying genes. To test the hypothesis that gene pathways contributing to de novo forms of CHD are distinct from those for recessive forms, we analyze 2391 whole-exome trios from the Pediatric Cardiac Genomics Consortium. We deploy a permutation-based gene-burden analysis to identify damaging recessive and compound heterozygous genotypes and disease genes, controlling for confounding effects, such as background mutation rate and ancestry. Cilia-related genes are significantly enriched for damaging rare recessive genotypes, but comparatively depleted for de novo variants. The opposite trend is observed for chromatin-modifying genes. Other cardiac developmental gene classes have less stratification by mode of inheritance than cilia and chromatin-modifying gene classes. Our analyses reveal dominant and recessive CHD are associated with distinct gene functions, with cilia-related genes providing a reservoir of rare segregating variation leading to CHD.

7.
Ann Intern Med ; 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31634909

RESUMO

Personalization of care through precision medicine and, more specifically, genetic testing is altering the treatment of breast cancer. Genetic testing is used in germline and tumor testing, with each providing distinct data to guide management. Germline testing supports more accurate risk evaluation to inform screening and risk-reducing medical and surgical strategies. Tumor testing can inform cancer recurrence risk assessment and cancer treatment options. This article reviews how genetic testing informs treatment and potential risks for a patient with breast cancer and her family. Hereditary cancer genetic testing of family members should include a discussion of potential results, adverse effects, clinical management options, and insurance coverage and address concerns about privacy or discrimination. Genetic professionals are available to assist with educating, testing, and treating patients with increased cancer risk.

8.
Patient Educ Couns ; 2019 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-31521424

RESUMO

OBJECTIVE: Growing use of clinical exome sequencing (CES) has led to an increased burden of genomic education. Self-guided educational tools can minimize the educational burden for genetic counselors (GCs). The effectiveness of these tools must be evaluated. METHODS: Parents of patients offered CES were randomized to watch educational videos before their visit or to receive routine care. Parents and GCs were surveyed about their experiences following the sessions. The responses of the video (n = 102) and no-video (n = 105) groups were compared. RESULTS: GCs reported no significant differences between parents in the video and no-video groups on genetics knowledge or CES knowledge. In contrast, parents' scores on genetics knowledge questions were lower in the video than no-video group (p = 0.007). Most parents reported the videos were informative, and the groups did not differ in satisfaction with GCs or decisions to have CES. CONCLUSION: GCs and parents perceived the videos to be beneficial. However, lower scores on genetics knowledge questions highlight the need for careful development of educational tools. PRACTICE IMPLICATIONS: Educational tools should be developed and assessed for effectiveness with the input of all stakeholders before widespread implementation. Better measures of the effectiveness of these educational tools are needed.

9.
Hum Genet ; 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31555905

RESUMO

Alkylglycerol monooxygenase (AGMO) is the only enzyme known to cleave the O-alkyl bonds of ether lipids (alkylglycerols) which are essential components of cell membranes. A homozygous frameshift variant [p.(Glu324LysfsTer12)] in AGMO has recently been reported in two male siblings with syndromic microcephaly. In this study, we identified rare nonsense, in frame deletion, and missense biallelic variants in AGMO in two unrelated individuals with neurodevelopmental disabilities. We assessed the activity of seven disease associated AGMO variants including the four variants identified in our two affected individuals expressed in human embryonic kidney (HEK293T) cells. We demonstrated significantly diminished enzyme activity for all disease-associated variants, supporting the mechanism as decreased AGMO activity. Future mechanistic studies are necessary to understand how decreased AGMO activity leads to the neurologic manifestations.

11.
Semin Perinatol ; : 151169, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31443905

RESUMO

Congenital diaphragmatic hernia (CDH) is a common birth defect that is associated with significant morbidity and mortality, especially when associated with additional congenital anomalies. Both environmental and genetic factors are thought to contribute to CDH. The genetic contributions to CDH are highly heterogeneous and incompletely defined. No one genetic cause accounts for more than 1-2% of CDH cases. In this review, we summarize the known genetic causes of CDH from chromosomal anomalies to individual genes. Both de novo and inherited variants contribute to CDH. Genes causing CDH are increasingly identified from animal models and from genomic strategies including exome and genome sequencing in humans. CDH genes are often transcription factors, genes involved in cell migration or the components of extracellular matrix. We provide clinical genetic testing strategies in the clinical evaluation that can identify a genetic cause in up to ∼30% of patients with non-isolated CDH and can be useful to refine prognosis, identify associated medical and neurodevelopmental issues to address, and inform family planning options.

12.
Artigo em Inglês | MEDLINE | ID: mdl-31387860

RESUMO

Whole-exome sequencing was used to identify the genetic etiology of a rapidly progressing neurological disease present in two of six siblings with early childhood onset of severe progressive spastic paraparesis and learning disabilities. A homozygous mutation (c.2005G>T, p, V669L) was found in VAC14, and the clinical phenotype is consistent with the recently described VAC14-related striatonigral degeneration, childhood-onset syndrome (SNDC) (MIM#617054). However, the phenotype includes a distinct clinical presentation of retinitis pigmentosa (RP), which has not previously been reported in association with VAC14 mutations. Brain magnetic resonance imaging (MRI) revealed abnormal magnetic susceptibility in the globus pallidus, which can be seen in neurodegeneration with brain iron accumulation (NBIA). RP is a group of inherited retinal diseases with phenotypic/genetic heterogeneity, and the pathophysiologic basis of RP is not completely understood but is thought to be due to a primary retinal photoreceptor cell degenerative process. Most cases of RP are seen in isolation (non-syndromic); this is a report of RP in two siblings with VAC14-associated syndrome, and it is suggested that a connection between RP and VAC14-associated syndrome should be explored in future studies.

13.
SLAS Discov ; 24(8): 829-841, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31284814

RESUMO

The etiological underpinnings of many CNS disorders are not well understood. This is likely due to the fact that individual diseases aggregate numerous pathological subtypes, each associated with a complex landscape of genetic risk factors. To overcome these challenges, researchers are integrating novel data types from numerous patients, including imaging studies capturing broadly applicable features from patient-derived materials. These datasets, when combined with machine learning, potentially hold the power to elucidate the subtle patterns that stratify patients by shared pathology. In this study, we interrogated whether high-content imaging of primary skin fibroblasts, using the Cell Painting method, could reveal disease-relevant information among patients. First, we showed that technical features such as batch/plate type, plate, and location within a plate lead to detectable nuisance signals, as revealed by a pre-trained deep neural network and analysis with deep image embeddings. Using a plate design and image acquisition strategy that accounts for these variables, we performed a pilot study with 12 healthy controls and 12 subjects affected by the severe genetic neurological disorder spinal muscular atrophy (SMA), and evaluated whether a convolutional neural network (CNN) generated using a subset of the cells could distinguish disease states on cells from the remaining unseen control-SMA pair. Our results indicate that these two populations could effectively be differentiated from one another and that model selectivity is insensitive to batch/plate type. One caveat is that the samples were also largely separated by source. These findings lay a foundation for how to conduct future studies exploring diseases with more complex genetic contributions and unknown subtypes.

14.
J Neurosci ; 39(37): 7321-7331, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31270155

RESUMO

Sensorimotor deficits are prevalent in many neurodevelopmental disorders like autism, including one of its common genetic etiologies, a 600 kb reciprocal deletion/duplication at 16p11.2. We have previously shown that copy number variations of 16p11.2 impact regional brain volume, white matter integrity, and early sensory responses in auditory cortex. Here, we test the hypothesis that abnormal cortical neurophysiology is present when genes in the 16p11.2 region are haploinsufficient, and in humans that this in turn may account for behavioral deficits specific to deletion carriers. We examine sensorimotor cortical network activity in males and females with 16p11.2 deletions compared with both typically developing individuals, and those with duplications of 16p11.2, using magnetoencephalographic imaging during preparation of overt speech or hand movements in tasks designed to be easy for all participants. In deletion carriers, modulation of beta oscillations (12-30 Hz) were increased during both movement types over effector-specific regions of motor cortices compared with typically developing individuals or duplication carriers, with no task-related performance differences between cohorts, even when corrected for their own cognitive and sensorimotor deficits. Reduced left hemispheric language specialization was observed in deletion carriers but not in duplication carriers. Neural activity over sensorimotor cortices in deletion carriers was linearly related to clinical measures of speech and motor impairment. These findings link insufficient copy number repeats at 16p11.2 to excessive neural activity (e.g., increased beta oscillations) in motor cortical networks for speech and hand motor control. These results have significant implications for understanding the neural basis of autism and related neurodevelopmental disorders.SIGNIFICANCE STATEMENT The recurrent ∼600 kb deletion at 16p11.2 (BP4-BP5) is one of the most common genetic etiologies of ASD and, more generally, of neurodevelopmental disorders. Here, we use high-resolution magnetoencephalographic imaging (MEG-I) to define with millisecond precision the underlying neurophysiological signature of motor impairments for individuals with 16p11.2 deletions. We identify significant increases in beta (12-30 Hz) suppression in sensorimotor cortices related to performance during speech and hand movement tasks. These findings not only provide a neurophysiological phenotype for the clinical presentation of this genetic deletion, but also guide our understanding of how genetic variation encodes for neural oscillatory dynamics.

15.
Am J Hum Genet ; 105(2): 413-424, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31327508

RESUMO

WD40 repeat-containing proteins form a large family of proteins present in all eukaryotes. Here, we identified five pediatric probands with de novo variants in WDR37, which encodes a member of the WD40 repeat protein family. Two probands shared one variant and the others have variants in nearby amino acids outside the WD40 repeats. The probands exhibited shared phenotypes of epilepsy, colobomas, facial dysmorphology reminiscent of CHARGE syndrome, developmental delay and intellectual disability, and cerebellar hypoplasia. The WDR37 protein is highly conserved in vertebrate and invertebrate model organisms and is currently not associated with a human disease. We generated a null allele of the single Drosophila ortholog to gain functional insights and replaced the coding region of the fly gene CG12333/wdr37 with GAL4. These flies are homozygous viable but display severe bang sensitivity, a phenotype associated with seizures in flies. Additionally, the mutant flies fall when climbing the walls of the vials, suggesting a defect in grip strength, and repeat the cycle of climbing and falling. Similar to wall clinging defect, mutant males often lose grip of the female abdomen during copulation. These phenotypes are rescued by using the GAL4 in the CG12333/wdr37 locus to drive the UAS-human reference WDR37 cDNA. The two variants found in three human subjects failed to rescue these phenotypes, suggesting that these alleles severely affect the function of this protein. Taken together, our data suggest that variants in WDR37 underlie a novel syndromic neurological disorder.

16.
J Clin Endocrinol Metab ; 104(10): 4667-4675, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31166600

RESUMO

CONTEXT: X-linked acrogigantism (X-LAG), a condition of infant-onset acrogigantism marked by elevated GH, IGF-1, and prolactin (PRL), is extremely rare. Thirty-three cases, including three kindreds, have been reported. These patients have pituitary adenomas that are thought to be mixed lactotrophs and somatotrophs. CASE DESCRIPTION: The patient's mother, diagnosed with acrogigantism at 21 months, underwent pituitary tumor excision at 24 months. For more than 30 years, stable PRL, GH, and IGF-1 concentrations and serial imaging studies indicated no tumor recurrence. During preconception planning, X-LAG was diagnosed: single-nucleotide polymorphism microarray showed chromosome Xq26.3 microduplication. After conception, single-nucleotide polymorphism microarray on a chorionic villus sample showed the same microduplication in the fetus, confirming familial X-LAG. The infant grew rapidly with rising PRL, GH, and IGF-1 concentrations and an enlarging suprasellar pituitary mass, despite treatment with bromocriptine. At 15 months, he underwent tumor resection. The pituitary adenoma resembled the mother's pituitary adenoma, with tumor cells arranged in trabeculae and glandular structures. In both cases, many tumor cells expressed PRL, GH, and pituitary-specific transcription factor-1. Furthermore, the tumor expressed other lineage-specific transcription factors, as well as SOX2 and octamer-binding transcription factor 4, demonstrating the multipotentiality of X-LAG tumors. Both showed an elevated Ki-67 proliferation index, 5.6% in the mother and 8.5% in the infant, the highest reported in X-LAG. CONCLUSIONS: This is a prenatally diagnosed case of X-LAG. Clinical follow-up and biochemical evaluation have provided insight into the natural history of this disease. Expression of stem cell markers and several cell lineage-specific transcription factors suggests that these tumors are multipotential.

17.
Public Health Genomics ; : 1-11, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31163445

RESUMO

BACKGROUND/AIMS: Ashkenazi Jews have a 1:40 prevalence of BRCA1/2 mutations. Orthodox Jews are an understudied population with unique cultural and religious factors that may influence BRCA1/2 genetic testing uptake. METHODS: Using a mixed-methods approach, we conducted a cross-sectional survey and focus groups among Orthodox Jewish women in New York/New Jersey to explore factors affecting decision-making about BRCA1/2 genetic testing. RESULTS: Among 321 evaluable survey participants, the median age was 47 years (range, 25-82); 56% were Modern Orthodox and 44% Yeshivish/Chassidish/other; 84% were married; 7% had a personal history of breast or ovarian cancer. Nearly 20% of the women had undergone BRCA1/2genetic testing. Predictors of genetic testing uptake included being Modern Orthodox (odds ratio [OR] = 2.31), married (OR = 3.49), and having a personal or family history of breast or ovarian cancer (OR = 9.74). Focus group participants (n = 31) confirmed the importance of rabbinic consultation in medical decision-making and revealed that stigma was a prominent factor in decisions about BRCA1/2 testing due to its potential impact on marriageability. CONCLUSION: In order to increase the uptake of BRCA1/2 genetic testing among the Orthodox Jewish population, it is crucial to understand religious and cultural factors, such as stigma and effect on marriageability, and engage religious leaders in raising awareness within the community.

18.
Artigo em Inglês | MEDLINE | ID: mdl-31167805

RESUMO

Heterozygous deleterious variants in PHIP have been associated with behavioral problems, intellectual disability/developmental delay, obesity/overweight, and dysmorphic features (BIDOD syndrome). We report an additional 10 individuals with pleckstrin homology domain-interacting protein (PHIP)-predicted deleterious variants (four frameshift, three missense, two nonsense, and one splice site; six of which are confirmed de novo). The mutation spectrum is diverse, and there is no clustering of mutations across the protein. The clinical phenotype of these individuals is consistent with previous reports and includes behavioral problems, intellectual disability, developmental delay, hypotonia, and dysmorphic features. The additional individuals we report have a lower frequency of obesity than previous reports and a higher frequency of gastrointestinal problems, social deficits, and behavioral challenges. Characterizing additional individuals with diverse mutations longitudinally will provide better natural history data to assist with medical management and educational and behavioral support.

19.
Proc Natl Acad Sci U S A ; 116(28): 14049-14054, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235600

RESUMO

Genomic analyses of patients with congenital heart disease (CHD) have identified significant contribution from mutations affecting cilia genes and chromatin remodeling genes; however, the mechanism(s) connecting chromatin remodeling to CHD is unknown. Histone H2B monoubiquitination (H2Bub1) is catalyzed by the RNF20 complex consisting of RNF20, RNF40, and UBE2B. Here, we show significant enrichment of loss-of-function mutations affecting H2Bub1 in CHD patients (enrichment 6.01, P = 1.67 × 10-03), some of whom had abnormal laterality associated with ciliary dysfunction. In Xenopus, knockdown of rnf20 and rnf40 results in abnormal heart looping, defective development of left-right (LR) asymmetry, and impaired cilia motility. Rnf20, Rnf40, and Ube2b affect LR patterning and cilia synergistically. Examination of global H2Bub1 level in Xenopus embryos shows that H2Bub1 is developmentally regulated and requires Rnf20. To examine gene-specific H2Bub1, we performed ChIP-seq of mouse ciliated and nonciliated tissues and showed tissue-specific H2Bub1 marks significantly enriched at cilia genes including the transcription factor Rfx3 Rnf20 knockdown results in decreased levels of rfx3 mRNA in Xenopus, and exogenous rfx3 can rescue the Rnf20 depletion phenotype. These data suggest that Rnf20 functions at the Rfx3 locus regulating cilia motility and cardiac situs and identify H2Bub1 as an upstream transcriptional regulator controlling tissue-specific expression of cilia genes. Our findings mechanistically link the two functional gene ontologies that have been implicated in human CHD: chromatin remodeling and cilia function.

20.
Genet Med ; 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31182824

RESUMO

PURPOSE: For neurodevelopmental disorders (NDDs), etiological evaluation can be a diagnostic odyssey involving numerous genetic tests, underscoring the need to develop a streamlined algorithm maximizing molecular diagnostic yield for this clinical indication. Our objective was to compare the yield of exome sequencing (ES) with that of chromosomal microarray (CMA), the current first-tier test for NDDs. METHODS: We performed a PubMed scoping review and meta-analysis investigating the diagnostic yield of ES for NDDs as the basis of a consensus development conference. We defined NDD as global developmental delay, intellectual disability, and/or autism spectrum disorder. The consensus development conference included input from genetics professionals, pediatric neurologists, and developmental behavioral pediatricians. RESULTS: After applying strict inclusion/exclusion criteria, we identified 30 articles with data on molecular diagnostic yield in individuals with isolated NDD, or NDD plus associated conditions (such as Rett-like features). Yield of ES was 36% overall, 31% for isolated NDD, and 53% for the NDD plus associated conditions. ES yield for NDDs is markedly greater than previous studies of CMA (15-20%). CONCLUSION: Our review demonstrates that ES consistently outperforms CMA for evaluation of unexplained NDDs. We propose a diagnostic algorithm placing ES at the beginning of the evaluation of unexplained NDDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA