*Phys Rev Lett ; 125(11): 117003, 2020 Sep 11.*

##### RESUMO

We study the unconventional superconducting correlations caused by a single isolated magnetic impurity in a conventional s-wave superconductor. Because of the local breaking of time-reversal symmetry, the impurity induces unconventional superconductivity, which is even in both space and spin variables but odd under time inversion. We derive an exact proportionality relation between the even-frequency component of the local electron density of states and the imaginary part of the odd-frequency local pairing function. By applying this relation to scanning tunneling microscopy spectra taken on top of magnetic impurities immersed in a Pb/Si(111) monolayer, we show experimental evidence of the occurrence of the odd-frequency pairing in these systems and explicitly extract its superconducting function from the data.

*Phys Rev Lett ; 120(6): 067002, 2018 Feb 09.*

##### RESUMO

We study the relationship between the pseudogap and Fermi-surface topology in the two-dimensional Hubbard model by means of the cellular dynamical mean-field theory. We find two possible mean-field metallic solutions on a broad range of interactions, doping, and frustration: a conventional renormalized metal and an unconventional pseudogap metal. At half filling, the conventional metal is more stable and displays an interaction-driven Mott metal-insulator transition. However, for large interactions and small doping, a region that is relevant for cuprates, the pseudogap phase becomes the ground state. By increasing doping, we show that a first-order transition from the pseudogap to the conventional metal is tied to a change of the Fermi surface from hole- to electronlike, unveiling a correlation-driven mechanism for a Lifshitz transition. This explains the puzzling link between the pseudogap phase and Fermi surface topology that has been pointed out in recent experiments.

*Phys Rev Lett ; 117(8): 086402, 2016 Aug 19.*

##### RESUMO

We investigate Weyl semimetals with tilted conical bands in a magnetic field. Even when the cones are overtilted (type-II Weyl semimetal), Landau-level quantization can be possible as long as the magnetic field is oriented close to the tilt direction. Most saliently, the tilt can be described within the relativistic framework of Lorentz transformations that give rise to a rich spectrum, displaying new transitions beyond the usual dipolar ones in the optical conductivity. We identify particular features in the latter that allow one to distinguish between semimetals of different types.

*Phys Rev Lett ; 116(5): 057003, 2016 Feb 05.*

##### RESUMO

The dynamics of a microscopic cuprate model, namely, the two-dimensional Hubbard model, is studied with a cluster extension of the dynamical mean-field theory. We find a nontrivial structure of the frequency-dependent self-energies, which describes an unprecedented interplay between the pseudogap and superconductivity. We show that these properties are well described by quasiparticles hybridizing with (hidden) fermionic excitations, emergent from the strong electronic correlations. The hidden fermion enhances superconductivity via a mechanism distinct from a conventional boson-mediated pairing, and originates the normal-state pseudogap. Though the hidden fermion is elusive in experiments, it can solve many experimental puzzles.

*Phys Rev Lett ; 101(25): 256404, 2008 Dec 19.*

##### RESUMO

We describe the T=0 quantum phase transition in heavy-fermion systems as an orbital-selective Mott transition (OSMT) using a cluster extension of dynamical mean-field theory. This transition is characterized by the emergence of a new intermediate energy scale corresponding to the opening of a pseudogap and the vanishing of the low-energy hybridization between light and heavy electrons. We identify the fingerprint of Mott physics in heavy electron systems with the appearance of surfaces in momentum space where the self-energy diverges and we derive experimental consequences of this scenario for photoemission, compressibility, optical conductivity, susceptibility, and specific heat.