Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IUCrJ ; 6(Pt 5): 884-894, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31576221

RESUMO

The present work reports on the charge and spin density modelling of YTiO3 in its ferromagnetic state (T C = 27 K). Accurate polarized neutron diffraction and high-resolution X-ray diffraction (XRD) experiments were carried out on a single crystal at the ORPHÉE reactor (LLB) and SPRING8 synchrotron source. The experimental data are modelled by the spin resolved pseudo-atomic multipolar model (Deutsch et al., 2012 ▸). The refinement strategy is discussed and the result of this electron density modelling is compared with that from XRD measured at 100 K and with density functional theory calculations. The results show that the spin and charge densities around the Ti atom have lobes directed away from the O atoms, confirming the filling of the t 2g orbitals of the Ti atom. The d xy orbital is less populated than d xz and d yz , which is a sign of a partial lift of degeneracy of the t 2g orbitals. This study confirms the orbital ordering at low temperature (20 K), which is already present in the paramagnetic state above the ferromagnetic transition (100 K).

2.
IUCrJ ; 5(Pt 5): 647-653, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30224967

RESUMO

In this study, the nature and characteristics of a short Br⋯π interaction observed in an ebselen derivative, 2-(2-bromophenyl)benzo[d][1,2]selenazol-3(2H)-one, has been explored. The electronic nature of this Br⋯π interaction was investigated via high-resolution X-ray diffraction and periodic density functional theory calculations using atoms-in-molecules (AIM) analysis. This study unravels the simultaneous presence of σ-hole and π-hole bonding characteristics in the same interaction. The dual characteristics of this unique Br⋯π interaction are further established via molecular electrostatic potentials (MESPs) and natural bond orbitals (NBOs).

3.
J Chem Phys ; 148(16): 164106, 2018 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-29716230

RESUMO

In this paper, we propose a simple cluster model with limited basis sets to reproduce the unpaired electron distributions in a YTiO3 ferromagnetic crystal. The spin-resolved one-electron-reduced density matrix is reconstructed simultaneously from theoretical magnetic structure factors and directional magnetic Compton profiles using our joint refinement algorithm. This algorithm is guided by the rescaling of basis functions and the adjustment of the spin population matrix. The resulting spin electron density in both position and momentum spaces from the joint refinement model is in agreement with theoretical and experimental results. Benefits brought from magnetic Compton profiles to the entire spin density matrix are illustrated. We studied the magnetic properties of the YTiO3 crystal along the Ti-O1-Ti bonding. We found that the basis functions are mostly rescaled by means of magnetic Compton profiles, while the molecular occupation numbers are mainly modified by the magnetic structure factors.

4.
Chemistry ; 24(43): 10881-10905, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29488652

RESUMO

Crystallography and quantum mechanics have always been tightly connected because reliable quantum mechanical models are needed to determine crystal structures. Due to this natural synergy, nowadays accurate distributions of electrons in space can be obtained from diffraction and scattering experiments. In the original definition of quantum crystallography (QCr) given by Massa, Karle and Huang, direct extraction of wavefunctions or density matrices from measured intensities of reflections or, conversely, ad hoc quantum mechanical calculations to enhance the accuracy of the crystallographic refinement are implicated. Nevertheless, many other active and emerging research areas involving quantum mechanics and scattering experiments are not covered by the original definition although they enable to observe and explain quantum phenomena as accurately and successfully as the original strategies. Therefore, we give an overview over current research that is related to a broader notion of QCr, and discuss options how QCr can evolve to become a complete and independent domain of natural sciences. The goal of this paper is to initiate discussions around QCr, but not to find a final definition of the field.

5.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 73(Pt 4): 544-549, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28762966

RESUMO

Joint refinement of X-ray and polarized neutron diffraction data has been carried out in order to determine charge and spin density distributions simultaneously in the nitronyl nitroxide (NN) free radical Nit(SMe)Ph. For comparison purposes, density functional theory (DFT) and complete active-space self-consistent field (CASSCF) theoretical calculations were also performed. Experimentally derived charge and spin densities show significant differences between the two NO groups of the NN function that are not observed from DFT theoretical calculations. On the contrary, CASSCF calculations exhibit the same fine details as observed in spin-resolved joint refinement and a clear asymmetry between the two NO groups.

6.
IUCrJ ; 2(Pt 4): 441-51, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26175903

RESUMO

Electron density is a fundamental quantity that enables understanding of the chemical bonding in a molecule or in a solid and the chemical/physical property of a material. Because electrons have a charge and a spin, two kinds of electron densities are available. Moreover, because electron distribution can be described in momentum or in position space, charge and spin density have two definitions and they can be observed through Bragg (for the position space) or Compton (for the momentum space) diffraction experiments, using X-rays (charge density) or polarized neutrons (spin density). In recent years, we have witnessed many advances in this field, stimulated by the increased power of experimental techniques. However, an accurate modelling is still necessary to determine the desired functions from the acquired data. The improved accuracy of measurements and the possibility to combine information from different experimental techniques require even more flexibility of the models. In this short review, we analyse some of the most important topics that have emerged in the recent literature, especially the most thought-provoking at the recent IUCr general meeting in Montreal.

7.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 9): o1061-2, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25309226

RESUMO

In the title mol-ecule, C18H21Cl2N3, the tri-aza-cyclo-hexane ring adopts a chair conformation with both 4-chloro-phenyl substituents in axial positions and the propyl group in an equatorial site. The dihedral angle between the planes of the benzene rings is 49.5 (1)°. In the crystal, mol-ecules are arranged in a head-to-tail fashion, forming columns along [010], and pairs of weak C-H⋯π inter-actions form inversion dimers between columns.

8.
IUCrJ ; 1(Pt 3): 194-9, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25075338

RESUMO

Since the 1980s it has been possible to probe crystallized matter, thanks to X-ray or neutron scattering techniques, to obtain an accurate charge density or spin distribution at the atomic scale. Despite the description of the same physical quantity (electron density) and tremendous development of sources, detectors, data treatment software etc., these different techniques evolved separately with one model per experiment. However, a breakthrough was recently made by the development of a common model in order to combine information coming from all these different experiments. Here we report the first experimental determination of spin-resolved electron density obtained by a combined treatment of X-ray, neutron and polarized neutron diffraction data. These experimental spin up and spin down densities compare very well with density functional theory (DFT) calculations and also confirm a theoretical prediction made in 1985 which claims that majority spin electrons should have a more contracted distribution around the nucleus than minority spin electrons. Topological analysis of the resulting experimental spin-resolved electron density is also briefly discussed.

9.
Acta Crystallogr A ; 68(Pt 6): 675-86, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23075610

RESUMO

New crystallographic tools were developed to access a more precise description of the spin-dependent electron density of magnetic crystals. The method combines experimental information coming from high-resolution X-ray diffraction (XRD) and polarized neutron diffraction (PND) in a unified model. A new algorithm that allows for a simultaneous refinement of the charge- and spin-density parameters against XRD and PND data is described. The resulting software MOLLYNX is based on the well known Hansen-Coppens multipolar model, and makes it possible to differentiate the electron spins. This algorithm is validated and demonstrated with a molecular crystal formed by a bimetallic chain, MnCu(pba)(H(2)O)(3)·2H(2)O, for which XRD and PND data are available. The joint refinement provides a more detailed description of the spin density than the refinement from PND data alone.

10.
Dalton Trans ; 41(22): 6598-601, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22522580

RESUMO

A comparison of the topology of the experimental electron density, as revealed by high resolution X-ray diffraction, is provided for two prototypal transition metal alkyne complexes where the alkyne formally behaves as a 2 or 4e(-) donor. A higher value of the electron density ρ(r)(bcp) at the M(T)···C bond critical point (bcp), a lower value of ρ(r)(bcp) at the coordinated C≡C bcp, outwardly bent MC bond paths and a close to zero ellipticity for the C[triple bond, length as m-dash]C bond constitute the topological signature of a 4e(-) donor alkyne ligand.

11.
Acta Crystallogr B ; 67(Pt 4): 324-32, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21775811

RESUMO

The experimental charge-density distribution of the dinuclear cobalt(II) complex [Co(2)(sym-hmp)(2)](BPh(4))(2)·2H(2)O·2C(3)H(6)O was determined at 100 K. When decreasing the temperature, the magnetic susceptibility of this complex deviates from Curie law because of anti-ferromagnetic exchange interactions, but the susceptibility increases sharply at low temperature (< 20 K). To explain this magnetic behaviour a tilt angle between the Co-atom environments was previously theoretically predicted. The structure and experimental charge density determined in this study show a tilt angle. The calculated value, based on the 100 K experimental d-orbital model, is in agreement with the theoretical one.

12.
J Am Chem Soc ; 126(39): 12604-13, 2004 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-15453793

RESUMO

A nitronyl-nitroxide (NIT) biradical D-NIT2 linked by a single double bond has been engineered and investigated in the solid state by a combination of X-ray diffraction, magnetic susceptibility measurement, EPR, as well as solid-state (1)H and (13)C NMR spectroscopies, and experimental electron density distribution. All techniques reveal that a double bond is a very efficient coupling unit for exchange interactions between two radical moieties. Using a Bleaney-Bowers model dimer (H = -JS(1)S(2)), a singlet-triplet energy gap of J = -460 K was found with the singlet state being the ground state. This very strong intramolecular interaction was confirmed by EPR measurements in CH(2)Cl(2) solution (6 10(-4) M) or dispersed in a polymer matrix at low concentration. In keeping with these unusual interactions, solid-state NMR signals of the biradical were found to be considerably less shifted than those found for related monoradicals. Temperature-dependent solid-state (13)C NMR spectra of D-NIT2 confirmed the very strong intramolecular coupling constant (J = -504 K). The electron density distribution of D-NIT2 was measured by high resolution X-ray diffraction, which also revealed that this biradical is an ideally conjugated system. The in-depth characterization includes the deformation maps and the observed electron density ellipticities, which exhibit a pronounced sigma-pi character of the O-N-C=C-N-O cores in keeping with an efficient electronic delocalization along the alkene spacer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA