Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Blood ; 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31484648

RESUMO

Germline DDX41 mutations are involved in familial myelodysplastic syndromes (MDS) and acute myeloid leukemias (AML). We analyzed the prevalence and characteristics of DDX41-related myeloid malignancies in an unselected cohort of 1385 patients with MDS or AML. Using targeted next-generation sequencing, we identified 28 different germline DDX41 variants in 43 unrelated patients which we classified as causal (n=21) or unknown significance (n=7) variants. We focused on the 33 patients having causal variants, representing 2.4% of our cohort. Median age was 69 years, most patients were males (79%). Only 9 patients (27%) had a family history of hematological malignancy, while 15 (46%) had personal history of cytopenias years prior to MDS/AML diagnosis. Most patients had normal karyotype (85%) and the most frequent somatic alteration was a second DDX41 mutation (79%). High-risk DDX41 MDS/AML patients treated with intensive chemotherapy (n=9) or azacitidine (n=11) had an overall response rate of 100% and 73%, respectively, with a median overall survival of 5.2 years. Our study highlights that germline DDX41 mutations are relatively common in adult MDS/AML, often without known family history, arguing for systematic screening. Salient features of DDX41-related myeloid malignancies include male preponderance, frequent pre-existing cytopenias, additional somatic DDX41 mutation and relatively good outcome.

6.
J Clin Oncol ; : JCO2018792184, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30403573

RESUMO

PURPOSE: Clonal hematopoiesis of indeterminate potential (CHIP) occurs in the blood of approximately 20% of older persons. CHIP is linked to an increased risk of hematologic malignancies and of all-cause mortality; thus, the eligibility of stem-cell donors with CHIP is questionable. We comprehensively investigated how donor CHIP affects outcome of allogeneic hematopoietic stem-cell transplantation (HSCT). METHODS: We collected blood samples from 500 healthy, related HSCT donors (age ≥ 55 years) at the time of stem-cell donation for targeted sequencing with a 66-gene panel. The effect of donor CHIP was assessed on recipient outcomes, including graft-versus-host disease (GVHD), cumulative incidence of relapse/progression (CIR/P), and overall survival (OS). RESULTS: A total of 92 clonal mutations with a median variant allele frequency of 5.9% were identified in 80 (16.0%) of 500 donors. CHIP prevalence was higher in donors related to patients with myeloid compared with lymphoid malignancies (19.2% v 6.3%; P ≤ .001). In recipients allografted with donor CHIP, we found a high cumulative incidence of chronic GVHD (cGVHD; hazard ratio [HR], 1.73; 95% CI, 1.21 to 2.49; P = .003) and lower CIR/P (univariate: HR, 0.62; 95% CI, 0.40 to 0.97; P = .027; multivariate: HR, 0.63; 95% CI, 0.41 to 0.98; P = .042) but no effect on nonrelapse mortality. Serial quantification of 25 mutations showed engraftment of 24 of 25 clones and disproportionate expansion in half of them. Donor-cell leukemia was observed in two recipients. OS was not affected by donor CHIP status (HR, 0.88; 95% CI, 0.65 to 1.321; P = .434). CONCLUSION: Allogeneic HSCT from donors with CHIP seems safe and results in similar survival in the setting of older, related donors. Future studies in younger and unrelated donors are warranted to extend these results. Confirmatory studies and mechanistic experiments are warranted to challenge the hypothesis that donor CHIP might foster cGVHD development and reduce relapse/progression risk.

7.
Cancer Discov ; 8(12): 1614-1631, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30266814

RESUMO

: Deletion of chromosome 6q is a well-recognized abnormality found in poor-prognosis T-cell acute lymphoblastic leukemia (T-ALL). Using integrated genomic approaches, we identified two candidate haploinsufficient genes contiguous at 6q14, SYNCRIP (encoding hnRNP-Q) and SNHG5 (that hosts snoRNAs), both involved in regulating RNA maturation and translation. Combined silencing of both genes, but not of either gene alone, accelerated leukemogeneis in a Tal1/Lmo1/Notch1-driven mouse model, demonstrating the tumor-suppressive nature of the two-gene region. Proteomic and translational profiling of cells in which we engineered a short 6q deletion by CRISPR/Cas9 genome editing indicated decreased ribosome and mitochondrial activities, suggesting that the resulting metabolic changes may regulate tumor progression. Indeed, xenograft experiments showed an increased leukemia-initiating cell activity of primary human leukemic cells upon coextinction of SYNCRIP and SNHG5. Our findings not only elucidate the nature of 6q deletion but also highlight the role of ribosomes and mitochondria in T-ALL tumor progression. SIGNIFICANCE: The oncogenic role of 6q deletion in T-ALL has remained elusive since this chromosomal abnormality was first identified more than 40 years ago. We combined genomic analysis and functional models to show that the codeletion of two contiguous genes at 6q14 enhances malignancy through deregulation of a ribosome-mitochondria axis, suggesting the potential for therapeutic intervention.This article is highlighted in the In This Issue feature, p. 1494.

8.
Br J Haematol ; 182(6): 843-850, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30004110

RESUMO

Isolated trisomy 8 (+8) is a frequent cytogenetic abnormality in the myelodysplastic syndromes (MDS), but its characteristics are poorly reported. We performed a retrospective study of 138 MDS patients with isolated +8, classified or reclassified as MDS (excluding MDS/myeloproliferative neoplasm). Myeloproliferative (MP) features were defined by the repeated presence of one of the following: white blood cell count >10 × 109 /l, myelemia (presence of circulating immature granulocytes with a predominance of more mature forms) >2%, palpable splenomegaly. Fifty-four patients (39·1%) had MP features: 28 at diagnosis, 26 were acquired during evolution. MP forms had more EZH2 (33·3% vs. 12·0% in non-MP, P = 0·047), ASXL1 (66·7% vs. 42·3%, P = 0·048) and STAG2 mutations (77·8% vs. 21·7%, P = 0·006). Median event-free survival (EFS) and overall survival (OS) were 25 and 27 months for patients with MP features at diagnosis, versus 28 (P = 0·15) and 39 months (P = 0·085) for those without MP features, respectively. Among the 57 patients who received hypomethylating agent (HMA), OS was lower in MP cases (13 months vs. 23 months in non-MP cases, P = 0.02). In conclusion, MP features are frequent in MDS with isolated +8. MP forms had more EZH2, ASXL1 and STAG2 mutations, responded poorly to HMA, and tended to have poorer survival than non-MP forms.

9.
Blood ; 132(7): 694-706, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-29907599

RESUMO

Inhibition of Janus-kinase 1/2 (JAK1/2) is a mainstay to treat myeloproliferative neoplasms (MPN). Sporadic observations reported the co-incidence of B-cell non-Hodgkin lymphomas during treatment of MPN with JAK1/2 inhibitors. We assessed 626 patients with MPN, including 69 with myelofibrosis receiving JAK1/2 inhibitors for lymphoma development. B-cell lymphomas evolved in 4 (5.8%) of 69 patients receiving JAK1/2 inhibition compared with 2 (0.36%) of 557 with conventional treatment (16-fold increased risk). A similar 15-fold increase was observed in an independent cohort of 929 patients with MPN. Considering primary myelofibrosis only (N = 216), 3 lymphomas were observed in 31 inhibitor-treated patients (9.7%) vs 1 (0.54%) of 185 control patients. Lymphomas were of aggressive B-cell type, extranodal, or leukemic with high MYC expression in the absence of JAK2 V617F or other MPN-associated mutations. Median time from initiation of inhibitor therapy to lymphoma diagnosis was 25 months. Clonal immunoglobulin gene rearrangements were already detected in the bone marrow during myelofibrosis in 16.3% of patients. Lymphomas occurring during JAK1/2 inhibitor treatment were preceded by a preexisting B-cell clone in all 3 patients tested. Sequencing verified clonal identity in 2 patients. The effects of JAK1/2 inhibition were mirrored in Stat1-/- mice: 16 of 24 mice developed a spontaneous myeloid hyperplasia with the concomitant presence of aberrant B cells. Transplantations of bone marrow from diseased mice unmasked the outgrowth of a malignant B-cell clone evolving into aggressive B-cell leukemia-lymphoma. We conclude that JAK/STAT1 pathway inhibition in myelofibrosis is associated with an elevated frequency of aggressive B-cell lymphomas. Detection of a preexisting B-cell clone may identify individuals at risk.

13.
Blood ; 131(7): 717-732, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29146883

RESUMO

Bone marrow (BM) failure (BMF) in children and young adults is often suspected to be inherited, but in many cases diagnosis remains uncertain. We studied a cohort of 179 patients (from 173 families) with BMF of suspected inherited origin but unresolved diagnosis after medical evaluation and Fanconi anemia exclusion. All patients had cytopenias, and 12.0% presented ≥5% BM blast cells. Median age at genetic evaluation was 11 years; 20.7% of patients were aged ≤2 years and 36.9% were ≥18 years. We analyzed genomic DNA from skin fibroblasts using whole-exome sequencing, and were able to assign a causal or likely causal germ line mutation in 86 patients (48.0%), involving a total of 28 genes. These included genes in familial hematopoietic disorders (GATA2, RUNX1), telomeropathies (TERC, TERT, RTEL1), ribosome disorders (SBDS, DNAJC21, RPL5), and DNA repair deficiency (LIG4). Many patients had an atypical presentation, and the mutated gene was often not clinically suspected. We also found mutations in genes seldom reported in inherited BMF (IBMF), such as SAMD9 and SAMD9L (N = 16 of the 86 patients, 18.6%), MECOM/EVI1 (N = 6, 7.0%), and ERCC6L2 (N = 7, 8.1%), each of which was associated with a distinct natural history; SAMD9 and SAMD9L patients often experienced transient aplasia and monosomy 7, whereas MECOM patients presented early-onset severe aplastic anemia, and ERCC6L2 patients, mild pancytopenia with myelodysplasia. This study broadens the molecular and clinical portrait of IBMF syndromes and sheds light on newly recognized disease entities. Using a high-throughput sequencing screen to implement precision medicine at diagnosis can improve patient management and family counseling.

14.
Oncotarget ; 7(27): 41599-41611, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27191650

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) develops through accumulation of multiple genomic alterations within T-cell progenitors resulting in clonal heterogeneity among leukemic cells. Human T-ALL xeno-transplantation in immunodeficient mice is a gold standard approach to study leukemia biology and we recently uncovered that the leukemia development is more or less rapid depending on T-ALL sample. The resulting human leukemia may arise through genetic selection and we previously showed that human T-ALL development in immune-deficient mice is significantly enhanced upon CD7+/CD34+ leukemic cell transplantations. Here we investigated the genetic characteristics of CD7+/CD34+ and CD7+/CD34- cells from newly diagnosed human T-ALL and correlated it to the speed of leukemia development. We observed that CD7+/CD34+ or CD7+/CD34- T-ALL cells that promote leukemia within a short-time period are genetically similar, as well as xenograft-derived leukemia resulting from both cell fractions. In the case of delayed T-ALL growth CD7+/CD34+ or CD7+/CD34- cells were either genetically diverse, the resulting xenograft leukemia arising from different but branched subclones present in the original sample, or similar, indicating decreased fitness to mouse micro-environment. Altogether, our work provides new information relating the speed of leukemia development in xenografts to the genetic diversity of T-ALL cell compartments.


Assuntos
Variação Genética , Transplante de Neoplasias , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Transplante Heterólogo , Animais , Antígenos CD34/metabolismo , Linhagem Celular Tumoral , Criança , Progressão da Doença , Heterogeneidade Genética , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Camundongos Transgênicos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Fatores de Tempo , Adulto Jovem
16.
Ann Hematol ; 95(1): 93-103, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26455579

RESUMO

Acute lymphoblastic leukemia of T cell lineage (T-ALL) is an aggressive malignant disease which accounts for 15 % of childhood ALL. T(11;14) is the more frequent chromosomal abnormality in childhood T-ALL, but its prognostic value remained controversial. Our aim was to analyze the outcome of childhood T-ALL with t(11;14) to know if the presence of this translocation is associated with a poor prognosis. We conducted a retrospective study from a series of 20 patients with t(11;14), treated in two consecutive trials from the European Organization for Research and Treatment of Cancer Children Leukemia Group over a 19-year period from 1989 to 2008. There were no significant differences between the 2 consecutive groups of patients with t(11;14) regarding the clinical and biological features at diagnosis. Among 19 patients who reached complete remission, 9 patients relapsed. We noticed 7 deaths all relapse- or failure-related. In the 58881 study, a presence of t(11;14) was associated with a poor outcome with an event-free survival at 5 years at 22.2 % versus 65.1 % for the non-t(11;14) T-ALL (p = 0.0004). In the more recent protocol, the outcome of T-ALL with t(11;14) reached that of non-t(11;14) T-ALL with an event-free survival at 5 years at 65.5 versus 74.9 % (p = 0.93). The presence of t(11;14) appeared as a poor prognostic feature in the 58881 trial whereas this abnormality no longer affected the outcome in the 58951 study. This difference is probably explained by the more intensive chemotherapy in the latest trial.


Assuntos
Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 14/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Translocação Genética/genética , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células T Precursoras/mortalidade , Estudos Prospectivos , Estudos Retrospectivos , Taxa de Sobrevida/tendências , Resultado do Tratamento
17.
Haematologica ; 100(10): 1311-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26137961

RESUMO

DNA copy number analysis has been instrumental for the identification of genetic alterations in B-cell precursor acute lymphoblastic leukemia. Notably, some of these genetic defects have been associated with poor treatment outcome and might be relevant for future risk stratification. In this study, we characterized recurrent deletions of CD200 and BTLA genes, mediated by recombination-activating genes, and used breakpoint-specific polymerase chain reaction assay to screen a cohort of 1154 cases of B-cell precursor acute lymphoblastic leukemia uniformly treated according to the EORTC-CLG 58951 protocol. CD200/BTLA deletions were identified in 56 of the patients (4.8%) and were associated with an inferior 8-year event free survival in this treatment protocol [70.2% ± 1.2% for patients with deletions versus 83.5% ± 6.4% for non-deleted cases (hazard ratio 2.02; 95% confidence interval 1.23-3.32; P=0.005)]. Genetically, CD200/BTLA deletions were strongly associated with ETV6-RUNX1-positive leukemias (P<0.0001), but were also identified in patients who did not have any genetic abnormality that is currently used for risk stratification. Within the latter population of patients, the presence of CD200/BTLA deletions was associated with inferior event-free survival and overall survival. Moreover, the multivariate Cox model indicated that these deletions had independent prognostic impact on event-free survival when adjusting for conventional risk criteria. All together, these findings further underscore the rationale for copy number profiling as an important tool for risk stratification in human B-cell precursor acute lymphoblastic leukemia. This trial was registered at www.ClinicalTrials.gov as #NCT00003728.


Assuntos
Antígenos CD/genética , Deleção de Genes , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Receptores Imunológicos/genética , Adolescente , Alelos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Criança , Pré-Escolar , Pontos de Quebra do Cromossomo , Ensaios Clínicos como Assunto , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Feminino , Frequência do Gene , Humanos , Lactente , Recém-Nascido , Estimativa de Kaplan-Meier , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidade , Prognóstico , Recidiva
18.
Br J Haematol ; 171(4): 574-84, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26205622

RESUMO

Infant T-cell acute lymphoblastic leukaemia (iT-ALL) is a very rare and poorly defined entity with a poor prognosis. We assembled a unique series of 13 infants with T-ALL, which allowed us to identify genotypic abnormalities and to investigate prenatal origins. Matched samples (diagnosis/remission) were analysed by single nucleotide polymorphism-array to identify genomic losses and gains. In three cases, we identified a recurrent somatic deletion on chromosome 3. These losses result in the complete deletion of MLF1 and have not previously been described in T-ALL. We observed two cases with an 11p13 deletion (LMO2-related), one of which also harboured a deletion of RB1. Another case presented a large 11q14·1-11q23·2 deletion that included ATM and only five patients (38%) showed deletions of CDKN2A/B. Four cases showed NOTCH1 mutations; in one case FBXW7 was the sole mutation and three cases showed alterations in PTEN. KMT2A rearrangements (KMT2A-r) were detected in three out of 13 cases. For three patients, mutations and copy number alterations (including deletion of PTEN) could be backtracked to birth using neonatal blood spot DNA, demonstrating an in utero origin. Overall, our data indicates that iT-ALL has a diverse but distinctive profile of genotypic abnormalities when compared to T-ALL in older children and adults.


Assuntos
Genótipo , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Idade de Início , Aneuploidia , Sequência de Bases , Cromossomos Humanos Par 11/ultraestrutura , Cromossomos Humanos Par 3/ultraestrutura , Metilação de DNA , DNA de Neoplasias/genética , Feminino , Doenças Fetais/genética , Deleção de Genes , Dosagem de Genes , Genes Neoplásicos , Humanos , Hibridização in Situ Fluorescente , Lactente , Recém-Nascido , Masculino , Dados de Sequência Molecular , Mutação , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células T Precursoras/embriologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/epidemiologia , Regiões Promotoras Genéticas/genética , Proteínas/genética , Deleção de Sequência
19.
Haematologica ; 100(10): 1301-10, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26206799

RESUMO

T-cell acute lymphoblastic leukemia is caused by the accumulation of multiple oncogenic lesions, including chromosomal rearrangements and mutations. To determine the frequency and co-occurrence of mutations in T-cell acute lymphoblastic leukemia, we performed targeted re-sequencing of 115 genes across 155 diagnostic samples (44 adult and 111 childhood cases). NOTCH1 and CDKN2A/B were mutated/deleted in more than half of the cases, while an additional 37 genes were mutated/deleted in 4% to 20% of cases. We found that IL7R-JAK pathway genes were mutated in 27.7% of cases, with JAK3 mutations being the most frequent event in this group. Copy number variations were also detected, including deletions of CREBBP or CTCF and duplication of MYB. FLT3 mutations were rare, but a novel extracellular mutation in FLT3 was detected and confirmed to be transforming. Furthermore, we identified complex patterns of pairwise associations, including a significant association between mutations in IL7R-JAK genes and epigenetic regulators (WT1, PRC2, PHF6). Our analyses showed that IL7R-JAK genetic lesions did not confer adverse prognosis in T-cell acute lymphoblastic leukemia cases enrolled in the UK ALL2003 trial. Overall, these results identify interconnections between the T-cell acute lymphoblastic leukemia genome and disease biology, and suggest a potential clinical application for JAK inhibitors in a significant proportion of patients with T-cell acute lymphoblastic leukemia.


Assuntos
Epigênese Genética , Janus Quinases/genética , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Receptores de Interleucina-7/genética , Adulto , Criança , Evolução Clonal/genética , Variações do Número de Cópias de DNA , Feminino , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Estudos de Associação Genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Janus Quinases/metabolismo , Masculino , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células T Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Prognóstico , Receptores de Interleucina-7/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais
20.
Nat Commun ; 6: 5794, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25565005

RESUMO

Early T-cell precursor leukaemia (ETP-ALL) is a high-risk subtype of human leukaemia that is poorly understood at the molecular level. Here we report translocations targeting the zinc finger E-box-binding transcription factor ZEB2 as a recurrent genetic lesion in immature/ETP-ALL. Using a conditional gain-of-function mouse model, we demonstrate that sustained Zeb2 expression initiates T-cell leukaemia. Moreover, Zeb2-driven mouse leukaemia exhibit some features of the human immature/ETP-ALL gene expression signature, as well as an enhanced leukaemia-initiation potential and activated Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signalling through transcriptional activation of IL7R. This study reveals ZEB2 as an oncogene in the biology of immature/ETP-ALL and paves the way towards pre-clinical studies of novel compounds for the treatment of this aggressive subtype of human T-ALL using our Zeb2-driven mouse model.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Proteínas de Homeodomínio/genética , Leucemia de Células T/fisiopatologia , Proteínas Repressoras/genética , Transdução de Sinais/fisiologia , Animais , Western Blotting , Imunoprecipitação da Cromatina , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Técnicas Histológicas , Proteínas de Homeodomínio/imunologia , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Janus Quinases/metabolismo , Estimativa de Kaplan-Meier , Cariotipagem , Luciferases , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Interleucina-7/metabolismo , Proteínas Repressoras/imunologia , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA