Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Phys Chem Chem Phys ; 16(8): 3558-65, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24413380


We have carried out first-principles calculations to investigate how the electronic and optical features of graphene nanoribbons are affected by the presence of atomic clusters. Aluminum clusters of different sizes and stabilized by organic ligands were deposited on graphene nanoribbons from which the energetic features of the adsorption plus electronic structure were treated within density-functional theory. Our results point out that, depending on their size and structure shape, the clusters perturb distinctively the electronic properties of the ribbons. We suggest that such selective response can be measured through optical means revealing that graphene nanoribbons can work as an efficient characterization medium of atomic clusters. In addition, we demonstrate that atomic clusters can fine-tune the electronic and spin-polarized states of graphene ribbons from which novel spin-filter devices could be designed.

J Chem Phys ; 135(9): 094701, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21913777


Ligand-stabilized aluminum clusters are investigated by density functional theory calculations. Analysis of Kohn-Sham molecular orbitals and projected density of states uncovers an electronic shell structure that adheres to the superatom complex model for ligand-stabilized aluminum clusters. In this current study, we explain how the superatom complex electron-counting rule is influenced by the electron-withdrawing ligand and a dopant atom in the metallic core. The results may guide the prediction of new stable ligand-stabilized (superatom) complexes, regardless of core and electron-withdrawing ligand composition.