Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
Endocr Relat Cancer ; 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34636746

RESUMO

Castration-resistant prostate cancer (CRPC) remains highly lethal and in need of novel, actionable therapeutic targets. The pioneer factor GATA2 is a significant prostate cancer (PC) driver and linked to poor prognosis. GATA2 directly promotes androgen receptor (AR) gene expression (both full-length and splice-variant) and facilitates AR binding to chromatin, recruitment of coregulators, and target gene transcription. Unfortunately, there is no clinically applicable GATA2 inhibitor available at the moment. Using a bioinformatics algorithm, we screened in silico 2,650 clinically relevant drugs for a potential GATA2 inhibitor. Validation studies used cytotoxicity assays (MTT), global gene expression analysis, reporter assay, reverse phase protein array analysis (RPPA), and immunoblotting. We examined target engagement via cellular thermal shift assay (CETSA), ChIP-qPCR, and GATA2 DNA-binding assay. We identified the vasodilator dilazep as a potential GATA2 inhibitor and confirmed on-target activity via CETSA. Dilazep exerted anticancer activity across a broad panel of GATA2-dependent PC cell lines in vitro and in a PDX model in vivo. Dilazep inhibited GATA2 recruitment to chromatin and suppressed the cell cycle program, transcriptional programs driven by GATA2, AR, and c-MYC, and the expression of several oncogenic drivers, including AR, c-MYC, FOXM1, CENPF, EZH2, UBE2C, and RRM2, as well as of several mediators of metastasis, DNA damage repair and stemness. In conclusion, we provide, via an extensive compendium of methodologies, proof-of-principle that a small molecule can inhibit GATA2 function and suppress its downstream AR, c-MYC, and other PC-driving effectors. We propose GATA2 as a therapeutic target in CRPC.

2.
Med (N Y) ; 2(3): 217-232, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-34693385

RESUMO

There is hope that host-directed therapy (HDT) for Tuberculosis (TB) can either shorten treatment duration, help cure drug resistant disease or limit the immunopathology. Many candidate HDT drugs have been proposed, however solid evidence only exists for a few select patient groups. The clinical presentation of TB is variable, with differences in severity, tissue pathology, and bacillary burden. TB clinical phenotypes likely determine the potential benefit of HDT. Underlying TB clinical phenotypes, there are TB "endotypes," defined as distinct molecular profiles, with specific metabolic, epigenetic, transcriptional, and immune phenotypes. TB endotypes can be characterized by either immunodeficiency or pathologic excessive inflammation. Additional factors, like comorbidities (HIV, diabetes, helminth infection), structural lung disease or Mycobacterial virulence also drive TB endotypes. Precise disease phenotyping, combined with in-depth immunologic and molecular profiling and multimodal omics integration, can identify TB endotypes, guide endotype-specific HDT, and improve TB outcomes, similar to advances in cancer medicine.

3.
Nat Commun ; 12(1): 5296, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489478

RESUMO

The vascular endothelium is present within metabolic organs and actively regulates energy metabolism. Here we show osteocalcin, recognized as a bone-secreted metabolic hormone, is expressed in mouse primary endothelial cells isolated from heart, lung and liver. In human osteocalcin promoter-driven green fluorescent protein transgenic mice, green fluorescent protein signals are enriched in endothelial cells lining aorta, small vessels and capillaries and abundant in aorta, skeletal muscle and eye of adult mice. The depletion of lipoprotein receptor-related protein 1 induces osteocalcin through a Forkhead box O -dependent pathway in endothelial cells. Whereas depletion of osteocalcin abolishes the glucose-lowering effect of low-density lipoprotein receptor-related protein 1 depletion, osteocalcin treatment normalizes hyperglycemia in multiple mouse models. Mechanistically, osteocalcin receptor-G protein-coupled receptor family C group 6 member A and insulin-like-growth-factor-1 receptor are in the same complex with osteocalcin and required for osteocalcin-promoted insulin signaling pathway. Therefore, our results reveal an endocrine/paracrine role of endothelial cells in regulating insulin sensitivity, which may have therapeutic implications in treating diabetes and insulin resistance through manipulating vascular endothelium.


Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Glucose/metabolismo , Hiperglicemia/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Osteocalcina/genética , Animais , Células Endoteliais/patologia , Endotélio Vascular/patologia , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Teste de Tolerância a Glucose , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/deficiência , Masculino , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteocalcina/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
4.
Adv Sci (Weinh) ; 8(19): e2005047, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34365742

RESUMO

Neuroblastoma (NB) arises from oncogenic disruption of neural crest (NC) differentiation. Treatment with retinoic acid (RA) to induce differentiation has improved survival in some NB patients, but not all patients respond, and most NBs eventually develop resistance to RA. Loss of the chromatin modifier chromatin assembly factor 1 subunit p150 (CHAF1A) promotes NB cell differentiation; however, the mechanism by which CHAF1A drives NB oncogenesis has remained unexplored. This study shows that CHAF1A gain-of-function supports cell malignancy, blocks neuronal differentiation in three models (zebrafish NC, human NC, and human NB), and promotes NB oncogenesis. Mechanistically, CHAF1A upregulates polyamine metabolism, which blocks neuronal differentiation and promotes cell cycle progression. Targeting polyamine synthesis promotes NB differentiation and enhances the anti-tumor activity of RA. The authors' results provide insight into the mechanisms that drive NB oncogenesis and suggest a rapidly translatable therapeutic approach (DFMO plus RA) to enhance the clinical efficacy of differentiation therapy in NB patients.

6.
Science ; 373(6555): 662-673, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34353949

RESUMO

The functional role of long noncoding RNAs (lncRNAs) in inherited metabolic disorders, including phenylketonuria (PKU), is unknown. Here, we demonstrate that the mouse lncRNA Pair and human HULC associate with phenylalanine hydroxylase (PAH). Pair-knockout mice exhibited excessive blood phenylalanine (Phe), musty odor, hypopigmentation, growth retardation, and progressive neurological symptoms including seizures, which faithfully models human PKU. HULC depletion led to reduced PAH enzymatic activities in human induced pluripotent stem cell-differentiated hepatocytes. Mechanistically, HULC modulated the enzymatic activities of PAH by facilitating PAH-substrate and PAH-cofactor interactions. To develop a therapeutic strategy for restoring liver lncRNAs, we designed GalNAc-tagged lncRNA mimics that exhibit liver enrichment. Treatment with GalNAc-HULC mimics reduced excessive Phe in Pair -/- and Pah R408W/R408W mice and improved the Phe tolerance of these mice.


Assuntos
Fenilalanina Hidroxilase/metabolismo , Fenilalanina/metabolismo , Fenilcetonúrias/genética , RNA Longo não Codificante/genética , Acetilgalactosamina , Animais , Biopterina/análogos & derivados , Biopterina/metabolismo , Biopterina/uso terapêutico , Dieta , Modelos Animais de Doenças , Feminino , Hepatócitos/metabolismo , Humanos , Fígado/embriologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Conformação de Ácido Nucleico , Fenilalanina/administração & dosagem , Fenilalanina Hidroxilase/deficiência , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/tratamento farmacológico , Fenilcetonúrias/metabolismo , Ligação Proteica , RNA Longo não Codificante/química , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/uso terapêutico
7.
Clin Immunol ; 230: 108820, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34365017

RESUMO

BACKGROUND: Peanut oral immunotherapy (POIT) has provided desensitization to peanut allergic individuals. Limited immunological evaluation exists during the first 24-weeks of POIT. OBJECTIVE: Regulatory T-cells (Tregs) are antigen induced immunosuppressive T-cells important in establishing tolerance. Delineation of early immunologic changes contributing to the development of peanut desensitization would help clarify the mechanism of action in POIT. We performed single-cell RNA sequencing (scRNAseq) on Tregs in pediatric subjects undergoing POIT during the first 24-weeks of therapy to evaluate early immunological changes induced by POIT. METHODS: PBMC samples from peanut allergic subjects between 5 and 12 years of age enrolled in a Phase 1/2a POIT study were collected and analyzed at 0, 6, and 24-weeks after POIT initiation and samples were compared to healthy non-peanut allergic controls. Tregs were enriched from PBMCs and scRNAseq analysis performed. Cell Ranger 3.1.0 (10× Genomics) was utilized to identify cell clusters and differentially expressed genes, and results were analyzed with Seurat suite version 3.0.0. RESULTS: Gene analysis revealed 10 major clusters corresponding to different cell types observed to change during POIT when compared to the healthy, non-peanut-allergic state. scRNAseq analysis of Tregs revealed strong CD3G expression correlating with gdTregs. scRNAseq analysis of gdTregs revealed dynamic changes occurring within the first 6-weeks of treatment and cell frequencies of naïve and memory gdTregs at 24-weeks of treatment reducing to levels similar to healthy controls. Analysis of transcriptomic cell identity analysis using SingleR showed gene expression in gdTregs similar to healthy control after 24-weeks of POIT treatment. scRNAseq analysis revealed alterations in gene expression for memory and naïve gdTregs during this timeframe. Specifically, expression of OX40R (TNFRSF4), GITR (TNFRSF18), TGFB1, CTLA4, ISG20, CD69 were upregulated in memory gdTregs compared to naive gdTregs by 24-weeks of POIT, while IL7R and SELL were downregulated in memory gdTregs compared to naïve gdTregs. CONCLUSIONS: There are specific expression profiles of peripheral naïve and mature gdTreg cells in peanut allergic patients undergoing POIT in the first 24-weeks of treatment implicating pathways involved in maintenance of immune homeostasis. gdTreg cells may contribute to the tolerogenic effect of POIT within the first 24-weeks of POIT treatment. These findings suggest that gdTregs cells may be an early marker of desensitization in subjects undergoing POIT.


Assuntos
Arachis/imunologia , Dessensibilização Imunológica/métodos , Genes Codificadores da Cadeia delta de Receptores de Linfócitos T , Genes Codificadores da Cadeia gama de Receptores de Linfócitos T , Hipersensibilidade a Amendoim/terapia , Linfócitos T Reguladores/imunologia , Administração Oral , Alérgenos/administração & dosagem , Criança , Pré-Escolar , Humanos , Memória Imunológica , Família Multigênica , Hipersensibilidade a Amendoim/genética , Hipersensibilidade a Amendoim/imunologia , RNA-Seq , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Análise de Célula Única , Fatores de Tempo , Transcriptoma
8.
Transl Psychiatry ; 11(1): 412, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34341337

RESUMO

Epigenetic dysregulation is thought to contribute to the etiology of schizophrenia (SZ), but the cell type-specificity of DNA methylation makes population-based epigenetic studies of SZ challenging. To train an SZ case-control classifier based on DNA methylation in blood, therefore, we focused on human genomic regions of systemic interindividual epigenetic variation (CoRSIVs), a subset of which are represented on the Illumina Human Methylation 450K (HM450) array. HM450 DNA methylation data on whole blood of 414 SZ cases and 433 non-psychiatric controls were used as training data for a classification algorithm with built-in feature selection, sparse partial least squares discriminate analysis (SPLS-DA); application of SPLS-DA to HM450 data has not been previously reported. Using the first two SPLS-DA dimensions we calculated a "risk distance" to identify individuals with the highest probability of SZ. The model was then evaluated on an independent HM450 data set on 353 SZ cases and 322 non-psychiatric controls. Our CoRSIV-based model classified 303 individuals as cases with a positive predictive value (PPV) of 80%, far surpassing the performance of a model based on polygenic risk score (PRS). Importantly, risk distance (based on CoRSIV methylation) was not associated with medication use, arguing against reverse causality. Risk distance and PRS were positively correlated (Pearson r = 0.28, P = 1.28 × 10-12), and mediational analysis suggested that genetic effects on SZ are partially mediated by altered methylation at CoRSIVs. Our results indicate two innate dimensions of SZ risk: one based on genetic, and the other on systemic epigenetic variants.


Assuntos
Metilação de DNA , Esquizofrenia , Estudos de Casos e Controles , Epigênese Genética , Humanos , Aprendizado de Máquina , Esquizofrenia/genética
9.
J Immunother Cancer ; 9(8)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34341132

RESUMO

BACKGROUND: Intratumoral injection of cyclic dinucleotide (CDN) agonists of the stimulator of interferon genes (STING) pathway engages innate immune activation and priming of adaptive immune effectors to foster local and distal tumor clearance. Despite proven therapeutic efficacy in preclinical models, a thorough understanding of how CDNs reprogram suppressive myeloid stroma in mouse and man is lacking. METHODS: Here, we perform deep transcript-level and protein-level profiling of myeloid-derived suppressor cells and M2 macrophages following stimulation with CDNs of ascending potency. Additionally, we leverage orthotopic Kras+/G12DTP53+/R172HPdx1-Cre (KPC) derived models of pancreatic adenocarcinoma (PDAC) to determine the capacity for locally administered CDNs to sensitize PDAC to immune checkpoint blockade. We use bioluminescent in vivo imaging and 30-parameter flow cytometry to profile growth kinetics and remodeling of the tumor stroma post-therapy. RESULTS: Highly potent synthetic STING agonists repolarize suppressive myeloid populations of human and murine origin in part through inhibition of Myc signaling, metabolic modulation, and antagonism of cell cycle. Surprisingly, high-potency synthetic agonists engage qualitatively unique pathways as compared with natural CDNs. Consistent with our mechanistic observations, we find that intratumoral injection of the highest activity STING agonist, IACS-8803, into orthotopic pancreatic adenocarcinoma lesions unmasks sensitivity to checkpoint blockade immunotherapy. Dimensionality reduction analyses of high parameter flow cytometry data reveals substantial contributions of both myeloid repolarization and T cell activation underlying the in vivo therapeutic benefit of this approach. CONCLUSIONS: This study defines the molecular basis of STING-mediated myeloid reprogramming, revealing previously unappreciated and qualitatively unique pathways engaged by CDNs of ascending potency during functional repolarization. Furthermore, we demonstrate the potential for high potency CDNs to overcome immunotherapy resistance in an orthotopic, multifocal model of PDAC.

10.
Oncotarget ; 12(14): 1339-1353, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34262645

RESUMO

The resistance of cancer cells to radiation-based treatment is a major clinical challenge confounding standard of care in cancer. This problem is particularly notable in many solid tumors where cancer cells are only partially responsive to radiation therapy. Combination of radiation with radiosensitizers is able to enhance tumor cell killing. However, currently available radiosensitizers are associated with significant normal tissue toxicity. Accordingly, there is an unmet need to develop safer and more effective radiosensitizers to improve tumor control. Here, we evaluated the radiosensitizing effect of the FDA-approved drug esomeprazole in normal and radioresistant human head and neck squamous cell carcinoma (HNSCC) cells in vitro, and in a mouse model of HNSCC. For the in vitro studies, we used cancer cell colony formation (clonogenicity) assay to compare cancer cell growth in the absence or presence of esomeprazole. To determine mechanism(s) of action, we assessed cell proliferation and profiled cell cycle regulatory proteins. In addition, we performed reverse phase protein array (RPPA) study to understand the global effect of esomeprazole on over 200 cancer-related proteins. For the in vivo study, we engrafted HNSCC in a mouse model and compared tumor growth in animals treated with radiation, esomeprazole, and combination of radiation with esomeprazole. We found that esomeprazole inhibits tumor growth and dose-dependently enhances the cell killing effect of ionizing radiation in wildtype and p53-mutant radioresistant cancer cells. Mechanistic studies demonstrate that esomeprazole arrests cancer cells in the G1 phase of the cell cycle through upregulation of p21 protein and inhibition of cyclin-dependent kinases (Cdks) type 1 (Cdk1) and type 2 (Cdk2). In vivo data showed greater tumor control in animals treated with combination of radiation and esomeprazole compared to either treatment alone, and that this was associated with inhibition of cell proliferation in vivo. In addition, combination of esomeprazole with radiation significantly impaired repair following radiation-induced DNA damage. Our studies indicate that esomeprazole sensitizes cancer cells to ionizing radiation, and is associated with upregulation of p21 to arrest cells in the G1 phase of the cell cycle. Our findings have significant therapeutic implications for the repurposing of esomeprazole as a radiosensitizer in HNSCC and other solid tumors.

11.
Am J Physiol Gastrointest Liver Physiol ; 321(3): G270-G279, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34288725

RESUMO

The use of human tissue stem cell-derived organoids has advanced our knowledge of human physiological and pathophysiological processes that are unable to be studied using other model systems. Increased understanding of human epithelial tissues including intestine, stomach, liver, pancreas, lung, and brain have been achieved using organoids. However, it is not yet clear whether these cultures recapitulate in vivo organ-to-organ signaling or communication. In this work, we demonstrate that mature stem cell-derived intestinal and liver organoid cultures each express functional molecules that modulate bile acid uptake and recycling. These organoid cultures can be physically coupled in a Transwell system and display increased secretion of fibroblast growth factor 19 (FGF19) (intestine) and downregulation of P450 enzyme cholesterol 7 α-hydroxylase (CYP7A) (liver) in response to apical exposure of the intestine to bile acids. This work establishes that organoid cultures can be used to study and therapeutically modulate interorgan interactions and advance the development of personalized approaches to medical care.NEW & NOTEWORTHY Interorgan signaling is a critical feature of human biology and physiology, yet has remained difficult to study due to the lack of in vitro models. Here, we demonstrate that physical coupling of ex vivo human intestine and liver epithelial organoid cultures recapitulates in vivo interorgan bile acid signaling. These results suggest that coupling of multiple organoid systems provides new models to investigate interorgan communication and advances our knowledge of human physiological and pathophysiological processes.


Assuntos
Diferenciação Celular/fisiologia , Intestinos/citologia , Organoides/citologia , Células-Tronco/citologia , Células Cultivadas , Circulação Êntero-Hepática/fisiologia , Humanos , Fígado/metabolismo , Estômago/citologia
12.
Acta Biomater ; 132: 245-259, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34280559

RESUMO

Human intestinal enteroids (HIE) models have contributed significantly to our understanding of diarrheal diseases and other intestinal infections, but their routine culture conditions fail to mimic the mechanical environment of the native intestinal wall. Because the mechanical characteristics of the intestine significantly alter how pathogens interact with the intestinal epithelium, we used different concentrations of polyethylene glycol (PEG) to generate soft (~2 kPa), medium (~10 kPa), and stiff (~100 kPa) hydrogel biomaterial scaffolds. The height of HIEs cultured in monolayers atop these hydrogels was 18 µm whereas HIEs grown on rigid tissue culture surfaces (with stiffness in the GPa range) were 10 µm. Substrate stiffness also influenced the amount of enteroaggregative E. coli (EAEC strain 042) adhered to the HIEs. We quantified a striking difference in adherence pattern; on the medium and soft gels, the bacteria formed clusters of > 100 and even > 1000 on both duodenal and jejunal HIEs (such as would be found in biofilms), but did not on glass slides and stiff hydrogels. All hydrogel cultured HIEs showed significant enrichment for gene and signaling pathways related to epithelial differentiation, cell junctions and adhesions, extracellular matrix, mucins, and cell signaling compared to the HIEs cultured on rigid tissue culture surfaces. Collectively, these results indicate that the HIE monolayers cultured on the hydrogels are primed for a robust engagement with their mechanical environment, and that the soft hydrogels promote the formation of larger EAEC aggregates, likely through an indirect differential effect on mucus. STATEMENT OF SIGNIFICANCE: Enteroids are a form of in vitro experimental mini-guts created from intestinal stem cells. Enteroids are usually cultured in 3D within Matrigel atop rigid glass or plastic substrates, which fail to mimic the native intestinal mechanical environment. Because intestinal mechanics significantly alter how pathogens interact with the intestinal epithelium, we grew human intestinal enteroids in 2D atop polyethylene glycol (PEG) hydrogel scaffolds that were soft, medium, or stiff. Compared with enteroids grown in 2D atop glass or plastic, the enteroids grown on hydrogels were taller and more enriched in mechanobiology-related gene signaling pathways. Additionally, enteroids on the softest hydrogels supported adhesion of large aggregates of enteroaggregative E. coli. Thus, this platform offers a more biomimetic model for studying enteric diseases.


Assuntos
Escherichia coli , Mucosa Intestinal , Humanos , Hidrogéis , Intestinos , Células-Tronco
13.
Cancer Res ; 81(17): 4441-4454, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34099494

RESUMO

Leucine-rich repeat-containing G protein-coupled receptors 4, 5, and 6 (LGR4/5/6) play critical roles in development and cancer. The widely accepted mechanism is that these proteins, together with their R-spondin ligands, stabilize Wnt receptors, thus potentiating Wnt signaling. Here we show that LGR4 enhanced breast cancer cell metastasis even when Wnt signaling was deactivated pharmacologically or genetically. Furthermore, LGR4 mutants that cannot potentiate Wnt signaling nevertheless promoted breast cancer cell migration and invasion in vitro and breast cancer metastasis in vivo. Multiomic screening identified EGFR as a crucial mediator of LGR4 activity in cancer progression. Mechanistically, LGR4 interacted with EGFR and blocked EGFR ubiquitination and degradation, resulting in persistent EGFR activation. Together, these data uncover a Wnt-independent LGR4-EGFR signaling axis with broad implications for cancer progression and targeted therapy. SIGNIFICANCE: This work demonstrates a Wnt-independent mechanism by which LGR4 promotes cancer metastasis.See related commentary by Stevens and Williams, p. 4397.

14.
JCI Insight ; 6(13)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34061778

RESUMO

The main mechanisms underlying sexually dimorphic outcomes in neonatal lung injury are unknown. We tested the hypothesis that hormone- or sex chromosome-mediated mechanisms interact with hyperoxia exposure to impact injury and repair in the neonatal lung. To distinguish sex differences caused by gonadal hormones versus sex chromosome complement (XX versus XY), we used the Four Core Genotypes (FCG) mice and exposed them to hyperoxia (95% FiO2, P1-P4: saccular stage) or room air. This model generates XX and XY mice that each have either testes (with Sry, XXM, or XYM) or ovaries (without Sry, XXF, or XYF). Lung alveolarization and vascular development were more severely impacted in XYM and XYF compared with XXF and XXM mice. Cell cycle-related pathways were enriched in the gonadal or chromosomal females, while muscle-related pathways were enriched in the gonadal males, and immune-response-related pathways were enriched in chromosomal males. Female gene signatures showed a negative correlation with human patients who developed bronchopulmonary dysplasia (BPD) or needed oxygen therapy at 28 days. These results demonstrate that chromosomal sex - and not gonadal sex - impacted the response to neonatal hyperoxia exposure. The female sex chromosomal complement was protective and could mediate sex-specific differences in the neonatal lung injury.

15.
Cardiovasc Res ; 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34132777

RESUMO

AIM: Arrhythmogenic cardiomyopathy (ACM) is a primary myocardial disease that typically manifests with cardiac arrhythmias, progressive heart failure and sudden cardiac death (SCD). ACM is mainly caused by mutations in genes encoding desmosome proteins. Desmosomes are cell-cell adhesion structures and hubs for mechanosensing and mechanotransduction. The objective was to identify the dysregulated molecular and biological pathways in human ACM in the absence of overt heart failure. METHODS AND RESULTS: Transcriptomes in the right ventricular endomyocardial biopsy samples from three independent individuals carrying truncating mutations in the DSP gene and 5 control samples were analyzed by RNA-Seq (discovery group). These cases presented with cardiac arrhythmias and had a normal right ventricular function. The RNA-Seq analysis identified ∼5,000 differentially expressed genes (DEGs), which predicted suppression of the Hippo and canonical WNT pathways, among others.Dysregulated genes and pathways, identified by RNA-Seq, were tested for validation in the right and left ventricular tissues from 5 independent autopsy-confirmed ACM cases with defined mutations (validation group), who were victims of SCD and had no history of heart failure. Protein levels and nuclear localization of the cWNT and Hippo pathway transcriptional regulators were reduced in the right and left ventricular validation samples. In contrast, levels of acetyltransferase EP300, known to suppress the Hippo and canonical WNT pathways, were increased and its bona fide target TP53 was acetylated. RNA-Seq data identified apical junction, reflective of cell-cell attachment, as the most disrupted biological pathway, which was corroborated by disrupted desmosomes and intermediate filament structures. Moreover, the DEGs also predicted dysregulation of over a dozen canonical signal transduction pathways, including the Tec kinase and integrin signaling pathways. The changes were associated with increased apoptosis and fibro-adipogenesis in the ACM hearts. CONCLUSION: Altered apical junction structures is associated with activation of the EP300-TP53 and suppression of the Hippo/cWNT pathways in human ACM caused by defined mutations in the absence of an overt heart failure. The findings implicate altered mechanotransduction in the pathogenesis of ACM. TRANSLATIONAL PERSPECTIVE: The findings suggest that altered mechanosensing at the cell-cell junction instigates a cascade of molecular events through the activation of acetyltransferase EP300/TP53 and suppression of gene expression through the Hippo/canonical WNT pathways in human arrhythmogenic cardiomyopathy (ACM) caused by defined mutations. These molecular changes occur early and in the absence of overt heart failure. Consequently, one may envision cell type-specific interventions to target the dysregulated transcriptional, mechanosensing, and mechanotransduction pathways to prevent the evolving phenotype in human ACM.

16.
Cardiooncology ; 7(1): 23, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34134789

RESUMO

BACKGROUND: Cancer therapy-related cardiac dysfunction may occur in pediatric cancer survivors. Identification of early markers of myocardial damage secondary to anthracycline exposure is crucial to develop strategies that may ameliorate this complication. OBJECTIVES: The purpose of this study was to identify early myocardial changes induced by doxorubicin with and without cardioprotection using dexrazoxane detected by serial cardiac magnetic resonance imaging (CMR) in a pre-clinical mouse model. METHODS: Serial CMR examinations were performed in 90 mice distributed in 3 groups: 45 received doxorubicin (DOX group), 30 mice received doxorubicin with dexrazoxane (DOX/DEX group) and 15 mice received saline injections (control group). We obtained the following CMR parameters in all mice: T2, extracellular volume quantification (ECV), myocardial deformation, and functional quantification. RESULTS: Myocardial edema assessed by T2 time was the earliest parameter demonstrating evidence of myocardial injury, most notable in the DOX group at week 4 and 8 compared with DOX/DEX group. Similarly, global longitudinal strain was abnormal in both the DOX and DOX/DEX groups. However, this change persisted only in the DOX group. The ECV was significantly elevated in the DOX group at the final CMR, while only minimally elevated in the DOX/DEX group. The right and left ejection fraction was decreased, along with the mass to volume ratio in the DOX group. The T2 time, ECV, and deformation correlated with ejection fraction and left ventricular volume. CONCLUSIONS: T2 time and deformation by CMR identifies early myocardial injury from anthracyclines. Dexrazoxne did not prevent the initial edema, but the inflammatory changes were not sustained. CMR may be useful for early detection of cardiac dysfunction. Serial CMR demonstrates dexrazoxane minimizes cardiac dysfunction and aids recovery in a mouse model.

17.
Sci Rep ; 11(1): 10461, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34002003

RESUMO

Loss of primary cilia in cells deficient for the tumor suppressor von Hippel Lindau (VHL) arise from elevated Aurora Kinase A (AURKA) levels. VHL in its role as an E3 ubiquitin ligase targets AURKA for degradation and in the absence of VHL, high levels of AURKA result in destabilization of the primary cilium. We identified NVP-BEZ235, a dual PI3K/AKT and mTOR inhibitor, in an image-based high throughput screen, as a small molecule that restored primary cilia in VHL-deficient cells. We identified the ability of AKT to modulate AURKA expression at the transcript and protein level. Independent modulation of AKT and mTOR signaling decreased AURKA expression in cells confirming AURKA as a new signaling node downstream of the PI3K cascade. Corroborating these data, a genetic knockdown of AKT in cells deficient for VHL rescued the ability of these cells to ciliate. Finally, inhibition of AKT/mTOR using NVP-BEZ235 was efficacious in reducing tumor burden in a 786-0 xenograft model of renal cell carcinoma. These data highlight a previously unappreciated signaling node downstream of the AKT/mTOR pathway via AURKA that can be targeted in VHL-null cells to restore ciliogenesis.

18.
Brain ; 144(8): 2527-2540, 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34014281

RESUMO

Gene discovery efforts in autism spectrum disorder have identified heterozygous defects in chromatin remodeller genes, the 'readers, writers and erasers' of methyl marks on chromatin, as major contributors to this disease. Despite this advance, a convergent aetiology between these defects and aberrant chromatin architecture or gene expression has remained elusive. Recently, data have begun to emerge that chromatin remodellers also function directly on the cytoskeleton. Strongly associated with autism spectrum disorder, the SETD2 histone methyltransferase for example, has now been shown to directly methylate microtubules of the mitotic spindle. However, whether microtubule methylation occurs in post-mitotic cells, for example on the neuronal cytoskeleton, is not known. We found the SETD2 α-tubulin lysine 40 trimethyl mark occurs on microtubules in the brain and in primary neurons in culture, and that the SETD2 C-terminal SRI domain is required for binding and methylation of α-tubulin. A CRISPR knock-in of a pathogenic SRI domain mutation (Setd2SRI) that disables microtubule methylation revealed at least one wild-type allele was required in mice for survival, and while viable, heterozygous Setd2SRI/wtmice exhibited an anxiety-like phenotype. Finally, whereas RNA-sequencing (RNA-seq) and chromatin immunoprecipitation-sequencing (ChIP-seq) showed no concomitant changes in chromatin methylation or gene expression in Setd2SRI/wtmice, primary neurons exhibited structural deficits in axon length and dendritic arborization. These data provide the first demonstration that microtubules of neurons are methylated, and reveals a heterozygous chromatin remodeller defect that specifically disables microtubule methylation is sufficient to drive an autism-associated phenotype.

19.
Blood Cancer J ; 11(5): 98, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016956

RESUMO

There is an unmet need to overcome nongenetic therapy-resistance to improve outcomes in AML, especially post-myeloproliferative neoplasm (MPN) secondary (s) AML. Studies presented describe effects of genetic knockout, degradation or small molecule targeted-inhibition of GFI1/LSD1 on active enhancers, altering gene-expressions and inducing differentiation and lethality in AML and (MPN) sAML cells. A protein domain-focused CRISPR screen in LSD1 (KDM1A) inhibitor (i) treated AML cells, identified BRD4, MOZ, HDAC3 and DOT1L among the codependencies. Our findings demonstrate that co-targeting LSD1 and one of these co-dependencies exerted synergistic in vitro lethality in AML and post-MPN sAML cells. Co-treatment with LSD1i and the JAKi ruxolitinib was also synergistically lethal against post-MPN sAML cells. LSD1i pre-treatment induced GFI1, PU.1 and CEBPα but depleted c-Myc, overcoming nongenetic resistance to ruxolitinib, or to BETi in post-MPN sAML cells. Co-treatment with LSD1i and BETi or ruxolitinib exerted superior in vivo efficacy against post-MPN sAML cells. These findings highlight LSD1i-based combinations that merit testing for clinical efficacy, especially to overcome nongenetic therapy-resistance in AML and post-MPN sAML.

20.
Mol Cell Proteomics ; 20: 100094, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33991687

RESUMO

Identifying biomarkers is important for assessment of disease progression, prediction of symptom development, and determination of treatment effectiveness. While unbiased analyses of differential gene expression using next-generation sequencing methods are now routinely conducted, proteomics studies are more challenging because of traditional methods predominantly being low throughput and offering a limited dynamic range for simultaneous detection of hundreds of proteins that drastically differ in their intracellular abundance. We utilized a sensitive and high-throughput proteomic technique, reverse phase protein array (RPPA), to attain protein expression profiles of primary fibroblasts obtained from patients with Friedreich's ataxia (FRDA) and unaffected controls (CTRLs). The RPPA was designed to detect 217 proteins or phosphorylated proteins by individual antibody, and the specificity of each antibody was validated prior to the experiment. Among 62 fibroblast samples (44 FRDA and 18 CTRLs) analyzed, 30 proteins/phosphoproteins were significantly changed in FRDA fibroblasts compared with CTRL cells (p < 0.05), mostly representing signaling molecules and metabolic enzymes. As expected, frataxin was significantly downregulated in FRDA samples, thus serving as an internal CTRL for assay integrity. Extensive bioinformatics analyses were conducted to correlate differentially expressed proteins with critical disease parameters (e.g., selected symptoms, age of onset, guanine-adenine-adenine sizes, frataxin levels, and Functional Assessment Rating Scale scores). Members of the integrin family of proteins specifically associated with hearing loss in FRDA. Also, RPPA data, combined with results of transcriptome profiling, uncovered defects in the retinoic acid metabolism pathway in FRDA samples. Moreover, expression of aldehyde dehydrogenase family 1 member A3 differed significantly between cardiomyopathy-positive and cardiomyopathy-negative FRDA cohorts, demonstrating that metabolites such as retinol, retinal, or retinoic acid could become potential predictive biomarkers of cardiac presentation in FRDA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...