Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34360659

RESUMO

Platelets are hematopoietic cells whose main function has for a long time been considered to be the maintenance of vascular integrity. They have an essential role in the hemostatic response, but they also have functional capabilities that go far beyond it. This review will provide an overview of platelet functions. Indeed, stress signals may induce platelet apoptosis through proapoptotis or hemostasis receptors, necrosis, and even autophagy. Platelets also interact with immune cells and modulate immune responses in terms of activation, maturation, recruitment and cytokine secretion. This review will also show that platelets, thanks to their wide range of innate immune receptors, and in particular toll-like receptors, and can be considered sentinels actively participating in the immuno-surveillance of the body. We will discuss the diversity of platelet responses following the engagement of these receptors as well as the signaling pathways involved. Finally, we will show that while platelets contribute significantly, via their TLRs, to immune response and inflammation, these receptors also participate in the pathophysiological processes associated with various pathogens and diseases, including cancer and atherosclerosis.


Assuntos
Aterosclerose/patologia , Plaquetas/patologia , Imunidade Inata/imunologia , Neoplasias/patologia , Ativação Plaquetária , Receptores Imunológicos/metabolismo , Receptores Toll-Like/metabolismo , Animais , Aterosclerose/imunologia , Aterosclerose/metabolismo , Plaquetas/imunologia , Plaquetas/metabolismo , Humanos , Neoplasias/imunologia , Neoplasias/metabolismo
3.
Sci Immunol ; 6(62)2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413139

RESUMO

Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10 ng/mL, in plasma diluted 1 to 10) of IFN-α and/or -ω are found in about 10% of patients with critical COVID-19 pneumonia, but not in subjects with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-α and/or -ω (100 pg/mL, in 1/10 dilutions of plasma) in 13.6% of 3,595 patients with critical COVID-19, including 21% of 374 patients > 80 years, and 6.5% of 522 patients with severe COVID-19. These antibodies are also detected in 18% of the 1,124 deceased patients (aged 20 days-99 years; mean: 70 years). Moreover, another 1.3% of patients with critical COVID-19 and 0.9% of the deceased patients have auto-Abs neutralizing high concentrations of IFN-ß. We also show, in a sample of 34,159 uninfected subjects from the general population, that auto-Abs neutralizing high concentrations of IFN-α and/or -ω are present in 0.18% of individuals between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% >80 years. Moreover, the proportion of subjects carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals <70 years, 2.3% between 70 and 80 years, and 6.3% >80 years. By contrast, auto-Abs neutralizing IFN-ß do not become more frequent with age. Auto-Abs neutralizing type I IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over-80s, and total fatal COVID-19 cases.


Assuntos
Autoanticorpos/imunologia , COVID-19/imunologia , Interferon Tipo I/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Autoanticorpos/sangue , COVID-19/mortalidade , Estudos de Casos e Controles , Criança , Pré-Escolar , Estado Terminal , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Lactente , Recém-Nascido , Interferon-alfa/imunologia , Pessoa de Meia-Idade , Adulto Jovem
4.
Blood ; 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34293122

RESUMO

In addition to their hemostatic role, platelets play a significant role in immunity. Once activated, platelets release extracellular vesicles (EVs) formed by budding of their cytoplasmic membranes. Because of their heterogeneity, platelet EVs (PEVs) are thought to perform diverse functions. It is unknown, however, whether the proteasome is transferred from platelets to PEVs or whether its function is retained. We hypothesized that functional protein processing and antigen presentation machinery is transferred to PEVs by activated platelets. Using molecular and functional assays, we show that the active 20S proteasome is enriched in PEVs along with MHC-I and lymphocyte costimulatory molecules (CD40L and OX40L). Proteasome-containing PEVs were identified in healthy donor blood, but did not increase in platelet concentrates that caused adverse transfusion reactions. They were, however, augmented after immune complex injections in mice. The complete biodistribution of murine PEVs following injection into mice revealed that they could principally reach lymphoid organs such as spleen and lymph nodes, in addition to the bone marrow, and to a lesser extent liver and lungs. The PEV proteasome processed exogenous ovalbumin (OVA) and loaded its antigenic peptide onto MHC-I molecules which promoted OVA-specific CD8+ T lymphocyte proliferation. These results suggest that PEVs contribute to adaptive immunity through cross-presentation of antigens and have privileged access to immune cells through the lymphatic system, a tissue location that is inaccessible to platelets.

5.
Hamostaseologie ; 41(2): 128-135, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33711849

RESUMO

Aside from their canonical role in hemostasis, it is increasingly recognized that platelets have inflammatory functions and can regulate both adaptive and innate immune responses. The main topic this review aims to cover is the proinflammatory effects and side effects of platelet transfusion. Platelets prepared for transfusion are subject to stress injury upon collection, preparation, and storage. With these types of stress, they undergo morphologic, metabolic, and functional modulations which are likely to induce platelet activation and the release of biological response modifiers (BRMs). As a consequence, platelet concentrates (PCs) accumulate BRMs during processing and storage, and these BRMs are ultimately transfused alongside platelets. It has been shown that BRMs present in PCs can induce immune responses and posttransfusion reactions in the transfusion recipient. Several recent reports within the transfusion literature have investigated the concept of platelets as immune cells. Nevertheless, current and future investigations will face the challenge of encompassing the immunological role of platelets in the scope of transfusion.

6.
Cell Tissue Bank ; 22(3): 479-486, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33398494

RESUMO

The detection of corneas operated on for refractive surgery [LASIK or photorefractive keratectomy (PRK)] will become a major concern for eye banks in the coming years because this surgery is often forgotten during the interview with the deceased's relatives. We present here 2 corneas operated on with PKR and stored successively in organ culture (OC) and in the active storage machine (ASM) that restores intraocular pressure, restores the cornea to its original shape, respects transparency and incorporates non-invasive controls. The 2 corneas of a 49-year-old donor operated 17 years earlier by PRK for -2 and -3 diopters myopia were stored in OC for 14 days and then placed in ASM for 48 h. Thickness map and OCT topography were performed under the 2 storage conditions, histology and electron microscopy were then performed. Traces of PRK remained unnoticed in OC while they were evident in ASM with central epithelial anomaly, central thinning and flattening of central keratometry shown by OCT. Histology and ultrastructure confirmed the absence of Bowman's membrane in the center. By placing the cornea under physiological conditions, and in particular by triggering its deswelling and by restoring its natural curvature, the ASM allows effective detection of subtle refractive surgery traces like those present after PRK.

7.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858930

RESUMO

While platelet function has traditionally been described in the context of maintaining vascular integrity, recent evidence suggests that platelets can modulate inflammation in a much more sophisticated and nuanced manner than previously thought. Some aspects of this expanded repertoire of platelet function are mediated via expression of Toll-like receptors (TLRs). TLRs are a family of pattern recognition receptors that recognize pathogen-associated and damage-associated molecular patterns. Activation of these receptors is crucial for orchestrating and sustaining the inflammatory response to both types of danger signals. The TLR family consists of 10 known receptors, and there is at least some evidence that each of these are expressed on or within human platelets. This review presents the literature on TLR-mediated platelet activation for each of these receptors, and the existing understanding of platelet-TLR immune modulation. This review also highlights unresolved methodological issues that potentially contribute to some of the discrepancies within the literature, and we also suggest several recommendations to overcome these issues. Current understanding of TLR-mediated platelet responses in influenza, sepsis, transfusion-related injury and cardiovascular disease are discussed, and key outstanding research questions are highlighted. In summary, we provide a resource-a "researcher's toolkit"-for undertaking further research in the field of platelet-TLR biology.


Assuntos
Plaquetas/imunologia , Trombose/metabolismo , Receptores Toll-Like/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Imunomodulação , Ativação Plaquetária
8.
PLoS One ; 15(5): e0233392, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32437464

RESUMO

Fresh corneal donation is essential for basic and preclinical research, but more unknown to public and the medical teams than donation for transplantation: it may raise concerns. We prospectively compared the acceptance rates and the characteristics of targeted corneal donation for research versus donation for transplantation during one year. The Agence de la Biomédecine authorized us to procure fresh corneas targeted for research, only from the donors with medical contraindications for transplantation, in order not to increase grafts shortage. Three nurses from the hospital coordination team of Saint-Etienne University Hospital, obtained consent for research and transplantation in parallel, screening all intra-hospital deaths cases, following standard protocol to check no refusal from families, despite the French opt-out system. They contacted 127 families for research and 244 for transplantation, in 71% of cases by telephone. Consent was obtained in 62% of cases for research and 54% for transplantation (P = 0.135). The main contraindication for transplantation was the cognitive disorders (66%) followed by the blood cancers (8%). This new specific activity, providing new source of fresh corneas for research immediately usable without any eyebank storage steps, didn't reduce the number of corneas procured for transplantation versus previous years (P = 0.998). Donors in the research group were 10 years older (P<0.001) without difference regarding endothelial cell quality (P = 0.071), allowing maximal clinical relevance for protocols using these fresh human scientific corneas provided by targeted donation.


Assuntos
Córnea , Transplante de Córnea , Bancos de Olhos , Doadores de Tecidos/provisão & distribuição , Obtenção de Tecidos e Órgãos , Idoso , Idoso de 80 Anos ou mais , Feminino , França , Hospitais Universitários , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Pesquisa
10.
Eur J Immunol ; 50(5): 725-735, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32012249

RESUMO

Extracorporeal photochemotherapy (ECP) that takes advantage of the immunomodulatory effects of UV light has been extensively used for many years for the treatment of several T cell-mediated diseases, including graft-versus-host disease (GvHD) and systemic scleroderma. Immune mechanisms that lead to the establishment of T cell tolerance in ECP-treated patients remain poorly known. In this study, we have tested the effect of UV/psoralen-treated BM-derived dendritic cells, referred to as ECP-BMDCs on the outcome of an antigen-specific T cell-mediated reaction, that is, contact hypersensitivity (CHS), which is mediated by CD8+ effector T cells (CD8+ Teff ). The intravenous (i.v.) injection of antigen-pulsed ECP-BMDCs in recipient C57BL/6 mice induced specific CD8+ T cells endowed with immunomodulatory properties (referred to as CD8+ TECP ), which prevented the priming of CD8+ Teff and the development of CHS, independently of conventional CD4+ regulatory T cells. CD8+ TECP mediated tolerance by inhibiting the migration and functions of skin DC and subsequently the priming of CD8+ Teff . CD8+ TECP displayed none of the phenotypes of the usual CD8+ T regulatory cells described so far. Our results reveal an underestimated participation of CD8+ T cells to ECP-induced immunomodulation that could explain the therapeutic effects of ECP in T cell-mediated diseases.


Assuntos
Células Dendríticas/imunologia , Dermatite de Contato/terapia , Tolerância Imunológica , Imunomodulação/efeitos da radiação , Linfócitos T Citotóxicos/efeitos da radiação , Linfócitos T Reguladores/efeitos da radiação , Alérgenos/administração & dosagem , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Células Dendríticas/citologia , Células Dendríticas/transplante , Dermatite de Contato/imunologia , Dermatite de Contato/fisiopatologia , Dinitrofluorbenzeno/administração & dosagem , Modelos Animais de Doenças , Feminino , Ficusina/administração & dosagem , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fotoferese/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Raios Ultravioleta
11.
Transfusion ; 60(4): 713-723, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32108957

RESUMO

BACKGROUND: Transfusion-related acute lung injury (TRALI) is a severe pulmonary reaction due to blood transfusions. The pathophysiology of this complication is still not widely elucidated by the scientific community, especially regarding the direct role of blood platelets within the cellular mechanism responsible for the development of TRALI. STUDY DESIGN AND METHODS: In this study, a mouse model was used to induce the development of antibody-mediated acute lung injury through injections of lipopolysaccharide and an anti-major histocompatibility complex Class I antibody. BALB/c mice were pretreated with an anti-GPIbα antibody, which induces platelet depletion, or ML354, a protease receptor 4 pathway inhibitor, 30 minutes before TRALI induction. RESULTS: Depletion of platelets before TRALI induction appeared to reduce the severity of TRALI without completely inhibiting its development. Also, inhibition of platelet activation by ML354 did not prevent the onset of TRALI. Finally, the stimuli used for TRALI induction also triggered specific platelet activation upon ex vivo stimulation. CONCLUSIONS: This study suggests that blood platelets are not critically required for TRALI induction, although they are to some extent involved in its pathophysiology.


Assuntos
Lesão Pulmonar Aguda Relacionada à Transfusão/prevenção & controle , Animais , Anticorpos/farmacologia , Plaquetas/efeitos dos fármacos , Humanos , Indóis/farmacologia , Camundongos , Ativação Plaquetária/efeitos dos fármacos , Complexo Glicoproteico GPIb-IX de Plaquetas/imunologia
12.
J Proteomics ; 218: 103717, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32088354

RESUMO

Platelet components (PCs) are occasionally associated with adverse transfusion reactions (ATRs). ATRs can occur regardless of the type of PC being transfused, whether it is a single-donor apheresis PC (SDA-PC) or a pooled PC (PPCs). The purpose of this study was to investigate the proteins and dysregulated pathways in both of the main types of PCs. The proteomic profiles of platelet pellets from SDA-PCs and PPCs involved in ATRs were analysed using the label-free LC-MS/MS method. Differentially expressed proteins with fold changes >|1.5| in clinical cases versus controls were characterised using bioinformatic tools (RStudio, GeneCodis3, and Ingenuity Pathways Analysis (IPA). The proteins were confirmed by western blotting. The common primary proteins found to be dysregulated in both types of PCs were the mitochondrial carnitine/acylcarnitine carrier protein (SLC25A20), multimerin-1 (MMRN1), and calumenin (CALU), which are associated with the important enrichment of platelet activation, platelet degranulation, and mitochondrial activity. Furthermore, this analysis revealed the involvement of commonly dysregulated canonical pathways, particularly mitochondrial dysfunction, platelet activation, and acute phase response. This proteomic analysis provided an interesting contribution to our understanding of the meticulous physiopathology of PCs associated with ATR. A larger investigation would assist in delineating the most relevant proteins to target within preventive transfusion safety strategies. BIOLOGICAL SIGNIFICANCE: Within platelet transfusion strategies, the two primary types of PCs predominantly processed in Europe, include (i) single donor apheresis PCs (SDA-PCs) from one donor and (ii) pooled PCs (PPCs). The current study used PCs from five buffy coats derived from five whole blood donations that were identical in ABO, RH1 and KEL1 groups. Both PC types were shown to be associated with the onset of an ATR in the transfused patient. Several common platelet proteins were found to be dysregulated in bags associated with ATR occurrences regardless of the type of PCs transfused and of their process. The dysregulated proteins included mitochondrial carnitine/acylcarnitine carrier protein (SLC25A20), which is involved in a fatty acid oxidation disorder; calumenin (CALU); and multimerin-1 (MMRN1), which is chiefly involved in platelet activation and degranulation. Dysregulated platelet protein pathways for ATRs that occurred with SDA-PCs and PPCs could support the dysregulated functions found in association with those three proteins. Those common platelet proteins may become candidates to define biomarkers associated with the onset of an ATR from PC transfusions, including monitoring during the quality steps of PC manufacturing, provided that the results are confirmed in larger cohorts. This study enriches our knowledge of platelet proteomics in PCs under pathological conditions.


Assuntos
Proteômica , Reação Transfusional , Plaquetas , Cromatografia Líquida , Europa (Continente) , Humanos , Transfusão de Plaquetas/efeitos adversos , Espectrometria de Massas em Tandem
13.
Transplantation ; 104(6): 1159-1165, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31895867

RESUMO

BACKGROUND: Corneal storage for the very long term, without degradation, would make it possible to optimize a very limited resource worldwide. We previously demonstrated the superiority, compared to conventional 4-week passive organ culture (OC), of an active storage machine (ASM) that restores intraocular pressure and medium renewal. Here, we investigate eye banking for up to 3 months. METHODS: In a randomized preclinical trial with 24 paired corneas, 1 was stored in OC and the other in ASM, using the same medium. Assessments were done on the second day and at 3 months: endothelial cell density (ECD in cells/mm), corneal transparency and thickness. At day 86, OC corneas were deswelled in a common hyperosmotic medium, but not the ASM corneas, which had remained thin. In addition, at day 88, viable ECD was measured using a live/dead assay, and endothelial expression of Na/K ATPase, Cox IV, ZO-1, N-CAM, and CD166 was observed. RESULTS: The ASM extended storage to 3 months with unprecedented endothelial cell quality: no OC corneas remained suitable for transplantation, but one-third of ASM corneas were compliant (ECD > 2000/mm). Given that corneas with ECD > 1600/mm were also usable for emergency, 58% of ASM corneas were usable versus 33% in OC. EC survival was 53% higher in ASM (P < 0.001), structural and functional proteins of ECs were much better preserved in ASM, and it prevented the constant major edema of OC. CONCLUSIONS: By extending graft survival to 3 months, the ASM will optimize eye banking and open up new perspectives in experimental research.


Assuntos
Córnea/fisiologia , Transplante de Córnea , Células Endoteliais/fisiologia , Bancos de Olhos/métodos , Preservação de Órgãos/instrumentação , Idoso , Idoso de 80 Anos ou mais , Contagem de Células , Córnea/citologia , Feminino , Humanos , Pressão Intraocular/fisiologia , Masculino , Pessoa de Meia-Idade , Soluções para Preservação de Órgãos , Estudos Prospectivos , Distribuição Aleatória , Fatores de Tempo
14.
Sci Rep ; 9(1): 12536, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31467410

RESUMO

Platelet transfusions can cause adverse reactions in their recipients, including transfusion-related acute lung injury (TRALI). The pathophysiology of TRALI depends on a number of signaling pathways and the inflammatory role played by blood platelets remains controversial. Platelets are important in inflammation, particularly via the immunomodulator complex CD40/CD40L. We studied the specific function of the CD40/CD40L interaction in regulating an experimental TRALI Two-hit model. A mouse model of immune TRALI was triggered by injection of LPS and an anti-MHC I antibody, and the effect of injection of a neutralizing anti-CD40L antibody before induction of TRALI investigated. The characteristics of TRALI were decreased body temperature, pulmonary lesions, and immune cell infiltration into the alveolar space. Pulmonary infiltration was evaluated by blood counts of specific immune cells and their detection in lung sections. Inhibition of the CD40/CD40L immunomodulator interaction significantly reduced communication between immune and/or endothelial cells and the development of pulmonary edema. Hence, our results indicate that targeting of the CD40/CD40L interaction could be an important method to prevent TRALI. While considering that our work concerned a mouse model, we postulate that improvement of the conditions under which platelet concentrates are prepared/stored would assist in alleviating the risk of TRALI.


Assuntos
Antígenos CD40/imunologia , Ligante de CD40/imunologia , Transfusão de Plaquetas/efeitos adversos , Lesão Pulmonar Aguda Relacionada à Transfusão/etiologia , Lesão Pulmonar Aguda Relacionada à Transfusão/imunologia , Animais , Antígenos CD40/genética , Ligante de CD40/genética , Modelos Animais de Doenças , Humanos , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Lesão Pulmonar Aguda Relacionada à Transfusão/genética
15.
Data Brief ; 25: 104013, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31297409

RESUMO

The presented dataset was used for the study focused on the search for differentially expressed proteins in blood platelet components (PCs) associated with adverse transfusion reactions (ATRs). Pellets of ATR platelet components and their controls were subjected to high-throughput proteomics analysis using a Q Exactive high-resolution tandem mass spectrometer. The data reported here constitutes an extension of "Differential protein expression of blood platelet components associated with adverse transfusion reactions" article Aloui et al., 2018. The reported data herein have been deposited into the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers PXD003510 for the pooled platelet components (PPCs) and PXD008886 for the apheresis platelet components (SDA-PCs) associated with ATRs.

16.
Front Immunol ; 10: 1478, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316518

RESUMO

Blood platelets play a central hemostatic role, (i) as they repair vascular epithelial damage, and (ii) they play immune defense roles, as they have the capacity to produce and secrete various cytokines, chemokines, and related products. Platelets sense and respond to local dangers (infectious or not). Platelets, therefore, mediate inflammation, express and use receptors to bind infectious pathogen moieties and endogenous ligands, among other components. Platelets contribute to effective pathogen clearance. Damage-associated molecular patterns (DAMPs) are danger signals released during inflammatory stress, such as burns, trauma and infection. Each pathogen is recognized by its specific molecular signature or pathogen-associated molecular pattern (PAMP). Recent data demonstrate that platelets have the capacity to sense external danger signals (DAMPs or PAMPs) differentially through a distinct type of pathogen recognition receptor (such as Toll-like receptors). Platelets regulate the innate immune response to pathogens and/or endogenous molecules, presenting several types of "danger" signals using a complete signalosome. Platelets, therefore, use complex tools to mediate a wide range of functions from danger sensing to tissue repair. Moreover, we noted that the secretory capacity of stored platelets over time and the development of stress lesions by platelets upon collection, processing, and storage are considered stress signals. The key message of this review is the "inflammatory response to stress" function of platelets in an infectious or non-infectious context.


Assuntos
Plaquetas , Inflamação/sangue , Estresse Fisiológico , Imunidade Adaptativa , Animais , Humanos , Imunidade Inata
17.
Blood Adv ; 3(12): 1868-1880, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31221660

RESUMO

Chronic myelomonocytic leukemia (CMML) is a myeloid hematological malignancy with overlapping features of myelodysplastic syndromes (MDSs) and myeloproliferative neoplasms (MPNs). The knowledge of the role of the tumor microenvironment (TME), particularly mesenchymal stromal cells (MSCs), in MDS pathogenesis is increasing. Generally, cancer is associated with a procoagulant state participating in tumor development. Monocytes release procoagulant, tissue factor (TF)-bearing microparticles. We hypothesized that MSCs and clonal monocytes release procoagulant extracellular vesicles (EVs) within the CMML TME, inducing a procoagulant state that could modify hematopoietic stem cell (HSC) homeostasis. We isolated and cultured MSCs and monocytes from CMML patients and MSCs from healthy donors (HDs). Their medium EVs and small EVs (sEVs) were collected after iterative ultracentrifugations and characterized by nanoparticle tracking analysis. Their impact on hemostasis was studied with a thrombin generation assay and fibrinography. CMML or HD HSCs were exposed to sEVs from either CMML or HD MSCs. CMML MSC sEVs increased HD HSC procoagulant activity, suggesting a transfer of TF from the CMML TME to HD HSCs. The presence of TF on sEVs was shown by electron microscopy and western blot. Moreover, CMML monocyte EVs conferred a procoagulant activity to HD MSCs, which was reversed by an anti-TF antibody, suggesting the presence of TF on the EVs. Our findings revealed a procoagulant "climate" within the CMML environment related to TF-bearing sEVs secreted by CMML MSCs and monocytes.


Assuntos
Vesículas Extracelulares/metabolismo , Leucemia Mielomonocítica Crônica/patologia , Monócitos/metabolismo , Microambiente Tumoral/imunologia , Fatores de Coagulação Sanguínea/fisiologia , Células Cultivadas , Vesículas Extracelulares/ultraestrutura , Células-Tronco Hematopoéticas/metabolismo , Homeostase/fisiologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Monócitos/patologia , Nanopartículas , Tromboplastina/metabolismo
18.
Transfusion ; 59(7): 2403-2414, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30973972

RESUMO

BACKGROUND: Whereas platelet transfusion is a common medical procedure, inflammation still occurs in a fraction of transfused individuals despite the absence of any apparent infectious agents. Platelets can shed membrane vesicles, called extracellular vesicles (EVs), some of which contain mitochondria (mito+EV). With its content of damage-associated molecular pattern (DAMP), the mitochondrion can stimulate the innate immune system. Mitochondrial DNA (mtDNA) is a recognized DAMP detected in the extracellular milieu in numerous inflammatory conditions and in platelet concentrates. We hypothesized that platelet-derived mitochondria encapsulated in EVs may represent a reservoir of mtDNA. STUDY DESIGN AND METHODS: Herein, we explored the implication of mito+EVs in the occurrence of mtDNA quantified in platelet concentrate supernatants that induced or did not induce transfusion adverse reactions. RESULTS: We observed that EVs were abundant in platelet concentrates, and platelet-derived mito+EVs were more abundant in platelet concentrates that induced adverse reactions. A significant correlation (rs = 0.73; p < 0.0001) between platelet-derived mito+EV levels and mtDNA concentrations was found. However, there was a nonsignificant correlation between the levels of EVs without mitochondria and mtDNA concentrations (rs = -0.11; p = 0.5112). The majority of the mtDNA was encapsulated into EVs. CONCLUSION: This study suggests that platelet-derived EVs, such as those that convey mitochondrial DAMPs, may be a useful biomarker for the prediction of potential risk of adverse transfusion reactions. Moreover, our work implies that investigations are necessary to determine whether there is a causal pathogenic role of mitochondrial DAMP encapsulated in EVs as opposed to mtDNA in solution.


Assuntos
Plaquetas/metabolismo , DNA Mitocondrial/metabolismo , Vesículas Extracelulares/metabolismo , Transfusão de Plaquetas , Reação Transfusional/metabolismo , Humanos , Inflamação/metabolismo
19.
Transfusion ; 59(3): 1090-1101, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30784079

RESUMO

BACKGROUND: Acute lung injury (ALI) is a severe complication of transfusion. In a previous study, we saw that inhibition of the CD40/CD40L complex allowed restoration of ALI lesions in an experimental mouse model. OBJECTIVES: This study focused on pancreas-associated injury development during experimental ALI pathogenesis and its limitation through CD40/CD40L complex inhibition. MATERIALS AND METHODS: An ALI mouse model was established through intraperitoneal lipopolysaccharide and intravenous anti-major histocompatibility complex class I monoclonal antibody injection. Preemption of lesions was achieved with intravenous injection of neutralizing anti-CD40L monoclonal antibody 30 minutes before the trigger, that is, anti-major histocompatibility complex class I monoclonal antibody administration. Histology and immunoassay analyses were used to evaluate pancreatic lesions. RESULTS: ALI development induced significant degradation of the lungs and pancreas and was associated with pancreatic lesions. Different scores were established showing more severe injury to the pancreas in ALI conditions; however, injury was significantly reduced through CD40/CD40L complex inhibition. CONCLUSION: This study supports the idea that several organs are exposed during ALI development, and particularly when such experimental ALI aims at mimicking transfusion-associated ALI; nevertheless, preventive treatment inhibiting CD40/CD40L (sCD40L) complex formation provides protection from lung disease as well as disease of other organs.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Pâncreas/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/imunologia , Animais , Antígenos CD40/imunologia , Ligante de CD40/imunologia , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pâncreas/imunologia
20.
Diseases ; 7(1)2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646515

RESUMO

Alloimmunisation to platelet antigens is not uncommon; a large number of females, having had pregnancies, developed antibodies to Human Leukocyte Antigen (HLA) moieties harboured on their foetuses' cells (inherited from the father(s)) that may conflict with further pregnancies and transfused Platelet Components occasionally. This is possible since platelets constitutionally express HLA class I molecules (though in copy numbers that consistently differ among individuals). Platelets also express HPA moieties that are variants of naturally expressed adhesion and aggregation molecules; HPA differences between mothers and foetuses and between donors and recipients explain alloimmune conflicts and consequences. Lastly, platelets express ABO blood group antigens, which are rarely immunising, however transfusion mismatches in ABO groups seem to be related to immunisation in other blood and tissue groups. Transfusion also brings residual leukocytes that may also immunise through their copious copy numbers of HLA class I (rarely class II on activated T lymphocytes, B cells, and dendritic cells). In addition, residual red blood cells in platelet concentrates may induce anti-red blood cell allo-antibodies. This short review aims to present the main mechanisms that are commonly reported in alloimmunisation. It also critically endeavours to examine paths to either dampen alloimmunisation occurrences or to prevent them.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...