Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Neuroimage ; : 116156, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31491525

RESUMO

Atlases of the central nervous system are essential for understanding the pathophysiology of neurological diseases, which remains one of the greatest challenges in neuroscience research today. These atlases provide insight into the underlying white matter microstructure and have been created from a variety of animal models, including rats. Although existing atlases of the rat spinal cord provide some details of axon microstructure, there is currently no histological dataset that quantifies axon morphometry exhaustively in the entire spinal cord. In this study, we created the first comprehensive rat spinal cord atlas of the white matter microstructure with quantifiable axon and myelin morphometrics. Using full-slice scanning electron microscopy images and state-of-the-art segmentation algorithms, we generated an atlas of microstructural metrics such as axon diameter, axonal density and g-ratio. After registering the Watson spinal cord white matter atlas to our template, we computed statistics across metrics, spinal levels and tracts. We notably found that g-ratio is relatively constant, whereas axon diameter showed the greatest variation. The atlas, data and full analysis code are freely available at: https://github.com/neuropoly/atlas-rat.

2.
Mult Scler ; : 1352458519867320, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31368404

RESUMO

BACKGROUND: Neuroinflammation with microglia activation is thought to be closely related to cortical multiple sclerosis (MS) lesion pathogenesis. OBJECTIVE: Using 11C-PBR28 and 7 Tesla (7T) imaging, we assessed in 9 relapsing-remitting multiple sclerosis (RRMS) and 10 secondary progressive multiple sclerosis (SPMS) patients the following: (1) microglia activation in lesioned and normal-appearing cortex, (2) cortical lesion inflammatory profiles, and (3) the relationship between neuroinflammation and cortical integrity. METHODS: Mean 11C-PBR28 uptake was measured in focal cortical lesions, cortical areas with 7T quantitative T2* (q-T2*) abnormalities, and normal-appearing cortex. The relative difference in cortical 11C-PBR28 uptake between patients and 14 controls was used to classify cortical lesions as either active or inactive. Disease burden was investigated according to cortical lesion inflammatory profiles. The relation between q-T2* and 11C-PBR28 uptake along the cortex was assessed. RESULTS: 11C-PBR28 uptake was abnormally high in cortical lesions in RRMS and SPMS; in SPMS, tracer uptake was significantly increased also in normal-appearing cortex. 11C-PBR28 uptake and q-T2* correlated positively in many cortical areas, negatively in some regions. Patients with high cortical lesion inflammation had worse clinical outcome and higher intracortical lesion burden than patients with low inflammation. CONCLUSION: 11C-PBR28 and 7T imaging reveal distinct profiles of cortical inflammation in MS, which are related to disease burden.

3.
Nat Commun ; 10(1): 3524, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388003

RESUMO

Damage to the corticospinal tract is widely studied following unilateral subcortical stroke, whereas less is known about changes to other sensorimotor pathways. This may be due to the fact that many studies investigated morphological changes in the brain, where the majority of descending and ascending brain pathways are overlapping, and did not investigate the brainstem where they separate. Moreover, these pathways continue passing through separate regions in the spinal cord. Here, using a high-resolution structural MRI of both the brainstem and the cervical spinal cord, we were able to identify a number of microstructurally altered pathways, in addition to the corticospinal tract, post stroke. Moreover, decreases in ipsi-lesional corticospinal tract integrity and increases in contra-lesional medial reticulospinal tract integrity were correlated with motor impairment severity in individuals with stroke.

4.
Spinal Cord ; 57(9): 717-728, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31267015

RESUMO

Traumatic spinal cord injury (SCI) leads to immediate neuronal and axonal damage at the focal injury site and triggers secondary pathologic series of events resulting in sensorimotor and autonomic dysfunction below the level of injury. Although there is no cure for SCI, neuroprotective and regenerative therapies show promising results at the preclinical stage. There is a pressing need to develop non-invasive outcome measures that can indicate whether a candidate therapeutic agent or a cocktail of therapeutic agents are positively altering the underlying disease processes. Recent conventional MRI studies have quantified spinal cord lesion characteristics and elucidated their relationship between severity of injury to clinical impairment and recovery. Next to the quantification of the primary cord damage, quantitative MRI measures of spinal cord (rostrocaudally to the lesion site) and brain integrity have demonstrated progressive and specific neurodegeneration of afferent and efferent neuronal pathways. MRI could therefore play a key role to ultimately uncover the relationship between clinical impairment/recovery and injury-induced neurodegenerative changes in the spinal cord and brain. Moreover, neuroimaging biomarkers hold promises to improve clinical trial design and efficiency through better patient stratification. The purpose of this narrative review is therefore to propose a guideline of clinically available MRI sequences and their derived neuroimaging biomarkers that have the potential to assess tissue damage at the macro- and microstructural level after SCI. In this piece, we make a recommendation for the use of key MRI sequences-both conventional and advanced-for clinical work-up and clinical trials.

5.
Sci Rep ; 9(1): 8147, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31148572

RESUMO

Extensive gray matter (GM) involvement has been demonstrated in multiple sclerosis (MS) patients. This study was aimed to identify GM alterations in relapsing-remitting MS (RRMS) patients using synthetic quantitative MRI (qMRI). We assessed myelin volume fraction (MVF) in each voxel on the basis of R1 and R2 relaxation rates and proton density in 14 early and 28 late (disease duration ≤5 and >5 years, respectively) RRMS patients, and 15 healthy controls (HCs). The MVF and myelin volumes of GM (GM-MyVol) were compared between groups using GM-based spatial statistics (GBSS) and the Kruskal-Wallis test, respectively. Correlations between MVF or GM-MyVol and disease duration or expanded disability status scale were also evaluated. RRMS patients showed a lower MVF than HCs, predominantly in the limbic and para-limbic areas, with more extensive areas noted in late RRMS patients. Late-RRMS patients had the smallest GM-MyVol (20.44 mL; early RRMS, 22.77 mL; HCs, 23.36 mL). Furthermore, the GM-MyVol in the RRMS group was inversely correlated with disease duration (r = -0.43, p = 0.005). In conclusion, the MVF and MyVol obtained by synthetic qMRI can be used to evaluate GM differences in RRMS patients.

6.
Ann Neurol ; 86(2): 158-167, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31177556

RESUMO

OBJECTIVE: C9orf72 hexanucleotide repeats expansions account for almost half of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) cases. Recent imaging studies in asymptomatic C9orf72 carriers have demonstrated cerebral white (WM) and gray matter (GM) degeneration before the age of 40 years. The objective of this study was to characterize cervical spinal cord (SC) changes in asymptomatic C9orf72 hexanucleotide carriers. METHODS: Seventy-two asymptomatic individuals were enrolled in a prospective study of first-degree relatives of ALS and FTD patients carrying the c9orf72 hexanucleotide expansion. Forty of them carried the pathogenic mutation (C9+ ). Each subject underwent quantitative cervical cord imaging. Structural GM and WM metrics and diffusivity parameters were evaluated at baseline and 18 months later. Data were analyzed in C9+ and C9- subgroups, and C9+ subjects were further stratified by age. RESULTS: At baseline, significant WM atrophy was detected at each cervical vertebral level in C9+ subjects older than 40 years without associated changes in GM and diffusion tensor imaging parameters. At 18-month follow-up, WM atrophy was accompanied by significant corticospinal tract (CST) fractional anisotropy (FA) reductions. Intriguingly, asymptomatic C9+ subjects older than 40 years with family history of ALS (as opposed to FTD) also exhibited significant CST FA reduction at baseline. INTERPRETATION: Cervical SC imaging detects WM atrophy exclusively in C9+ subjects older than 40 years, and progressive CST FA reductions can be identified on 18-month follow-up. Cervical SC magnetic resonance imaging readily captures presymptomatic pathological changes and disease propagation in c9orf72-associated conditions. ANN NEUROL 2019;86:158-167.

7.
Ageing Res Rev ; 53: 100907, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31063866

RESUMO

BACKGROUND: Given the increasing incidence of vascular diseases and dementia, a better understanding of the cerebrovascular changes induced by arterial stiffness is important for early identification of white and gray matter abnormalities that might antedate the appearance of clinical cognitive symptoms. Here, we review the evidence from neuroimaging demonstrating the impact of arterial stiffness on the aging brain. METHOD: This review presents findings from recent studies examining the association between arterial stiffness, cognitive function, cerebral hypoperfusion, and markers of neuronal fiber integrity using a variety of MRI techniques. RESULTS: Overall, changes associated with arterial stiffness indicates that the corpus callosum, the internal capsule and the corona radiata may be the most vulnerable regions to microvascular damage. In addition, the microstructural integrity of these regions appears to be associated with cognitive performance. Changes in gray matter structure have also been found to be associated with arterial stiffness and are present as early as the 5th decade. Moreover, low cerebral perfusion has been associated with arterial stiffness as well as lower cognitive performance in age-sensitive tasks such as executive function. CONCLUSION: Considering the established relationship between arterial stiffness, brain and cognition, this review highlights the need for future studies of brain structure and function in aging to implement measurements of arterial stiffness in parallel with quantitative imaging.

8.
Magn Reson Imaging ; 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-31004711

RESUMO

This paper presents an open-source pipeline to train neural networks to segment structures of interest from MRI data. The pipeline is tailored towards homogeneous datasets and requires relatively low amounts of manual segmentations (few dozen, or less depending on the homogeneity of the dataset). Two use-case scenarios for segmenting the spinal cord white and grey matter are presented: one in marmosets with variable numbers of lesions, and the other in the publicly available human grey matter segmentation challenge [1]. The pipeline is freely available at: https://github.com/neuropoly/multiclass-segmentation.

9.
Magn Reson Med Sci ; 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30956274

RESUMO

PURPOSE: Flowing blood sometimes appears bright on synthetic T1-weighted images, which could be misdiagnosed as a thrombus. This study aimed to investigate the frequency of hyperintensity within cerebral venous sinuses on synthetic MR images and to evaluate the influence of increasing flow rates on signal intensity using a flow phantom. MATERIALS AND METHODS: Imaging data, including synthetic and conventional MRI scans, from 22 patients were retrospectively analyzed. Signal intensities at eight locations of cerebral venous sinuses on synthetic images were graded using the following three-point scale: 0, "dark vessel"; 1, "hyperintensity within the walls"; and 2, "hyperintensity within the lumen." A phantom with gadolinium solution inside a U-shaped tube was acquired without flow and then with increasing flow rates (60, 100, 200, 300, 400 ml/min). RESULTS: Considering all sinus locations, the venous signal intensity on synthetic T1-weighted images was graded as 2 in 79.8% of the patients. On synthetic T2-weighted images, all sinuses were graded as 0. On fluid-attenuated inversion recovery (FLAIR) images, sinuses were almost always graded as 0 (99.4%). In the phantom study, the signal initially became brighter on synthetic T1-weighted images as the flow rate increased. Above a certain flow rate, the signal started to decrease. CONCLUSION: High signal intensity within the cerebral venous sinuses is a frequent finding on synthetic T1-weighted images. This corresponds to the hyperintensity noted at certain flow rates in the phantom experiment.

10.
Neuroimage ; 194: 1-11, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30898655

RESUMO

Recent advances in deep learning methods have redefined the state-of-the-art for many medical imaging applications, surpassing previous approaches and sometimes even competing with human judgment in several tasks. Those models, however, when trained to reduce the empirical risk on a single domain, fail to generalize when applied to other domains, a very common scenario in medical imaging due to the variability of images and anatomical structures, even across the same imaging modality. In this work, we extend the method of unsupervised domain adaptation using self-ensembling for the semantic segmentation task and explore multiple facets of the method on a small and realistic publicly-available magnetic resonance (MRI) dataset. Through an extensive evaluation, we show that self-ensembling can indeed improve the generalization of the models even when using a small amount of unlabeled data.

11.
Brain ; 142(3): 633-646, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715195

RESUMO

Spinal cord lesions detected on MRI hold important diagnostic and prognostic value for multiple sclerosis. Previous attempts to correlate lesion burden with clinical status have had limited success, however, suggesting that lesion location may be a contributor. Our aim was to explore the spatial distribution of multiple sclerosis lesions in the cervical spinal cord, with respect to clinical status. We included 642 suspected or confirmed multiple sclerosis patients (31 clinically isolated syndrome, and 416 relapsing-remitting, 84 secondary progressive, and 73 primary progressive multiple sclerosis) from 13 clinical sites. Cervical spine lesions were manually delineated on T2- and T2*-weighted axial and sagittal MRI scans acquired at 3 or 7 T. With an automatic publicly-available analysis pipeline we produced voxelwise lesion frequency maps to identify predilection sites in various patient groups characterized by clinical subtype, Expanded Disability Status Scale score and disease duration. We also measured absolute and normalized lesion volumes in several regions of interest using an atlas-based approach, and evaluated differences within and between groups. The lateral funiculi were more frequently affected by lesions in progressive subtypes than in relapsing in voxelwise analysis (P < 0.001), which was further confirmed by absolute and normalized lesion volumes (P < 0.01). The central cord area was more often affected by lesions in primary progressive than relapse-remitting patients (P < 0.001). Between white and grey matter, the absolute lesion volume in the white matter was greater than in the grey matter in all phenotypes (P < 0.001); however when normalizing by each region, normalized lesion volumes were comparable between white and grey matter in primary progressive patients. Lesions appearing in the lateral funiculi and central cord area were significantly correlated with Expanded Disability Status Scale score (P < 0.001). High lesion frequencies were observed in patients with a more aggressive disease course, rather than long disease duration. Lesions located in the lateral funiculi and central cord area of the cervical spine may influence clinical status in multiple sclerosis. This work shows the added value of cervical spine lesions, and provides an avenue for evaluating the distribution of spinal cord lesions in various patient groups.

12.
Invest Radiol ; 54(1): 39-47, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30300164

RESUMO

OBJECTIVES: The aim of this study was to evaluate the linearity, bias, intrascanner repeatability, and interscanner reproducibility of quantitative values derived from a multidynamic multiecho (MDME) sequence for rapid simultaneous relaxometry. MATERIALS AND METHODS: The NIST/ISMRM (National Institute of Standards and Technology/International Society for Magnetic Resonance in Medicine) phantom, containing spheres with standardized T1 and T2 relaxation times and proton density (PD), and 10 healthy volunteers, were scanned 10 times on different days and 2 times during the same session, using the MDME sequence, on three 3 T scanners from different vendors. For healthy volunteers, brain volumetry and myelin estimation were performed based on the measured T1, T2, and PD. The measured phantom values were compared with reference values; volunteer values were compared with their averages across 3 scanners. RESULTS: The linearity of both phantom and volunteer measurements in T1, T2, and PD values was very strong (R = 0.973-1.000, 0.979-1.000, and 0.982-0.999, respectively) The highest intrascanner coefficients of variation (CVs) for T1, T2, and PD were 2.07%, 7.60%, and 12.86% for phantom data, and 1.33%, 0.89%, and 0.77% for volunteer data, respectively. The highest interscanner CVs of T1, T2, and PD were 10.86%, 15.27%, and 9.95% for phantom data, and 3.15%, 5.76%, and 3.21% for volunteer data, respectively. Variation of T1 and T2 tended to be larger at higher values outside the range of those typically observed in brain tissue. The highest intrascanner and interscanner CVs for brain tissue volumetry were 2.50% and 5.74%, respectively, for cerebrospinal fluid. CONCLUSIONS: Quantitative values derived from the MDME sequence are overall robust for brain relaxometry and volumetry on 3 T scanners from different vendors. Caution is warranted when applying MDME sequence on anatomies with relaxometry values outside the range of those typically observed in brain tissue.


Assuntos
Encéfalo/anatomia & histologia , Imagem por Ressonância Magnética/métodos , Adulto , Viés , Encéfalo/diagnóstico por imagem , Estudos de Avaliação como Assunto , Feminino , Humanos , Masculino , Imagens de Fantasmas , Valores de Referência , Reprodutibilidade dos Testes , Adulto Jovem
13.
Neuroimage ; 185: 119-128, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326296

RESUMO

Due to the technical challenges of large-scale microscopy and analysis, to date only limited knowledge has been made available about axon morphometry (diameter, shape, myelin thickness, volume fraction), thereby limiting our understanding of neuronal microstructure and slowing down research on neurodegenerative pathologies. This study addresses this knowledge gap by establishing a state-of-the-art acquisition and analysis framework for mapping axon morphometry, and providing the first comprehensive mapping of axon morphometry in the human spinal cord. We dissected, fixed and stained a human spinal cord with osmium tetroxide, and used a scanning electron microscope to image the entirety of 23 axial slices, covering C1 to L5 spinal levels. An automatic method based on deep learning was then used to segment each axon and myelin sheath to produce maps of axon morphometry. These maps were then registered to a standard spinal cord magnetic resonance imaging (MRI) template. Between 500,000 (lumbar) and 1 million (cervical) myelinated axons were segmented at each level of this human spinal cord. Morphometric features show a large disparity between tracts, but high right-left symmetry. Our results suggest a modality-based organization of the dorsal column in the human, as it has been observed in the rat. The generated axon morphometry template is publicly available at https://osf.io/8k7jr/ and could be used as a reference for quantitative MRI studies. The proposed framework for axon morphometry mapping could be extended to other parts of the central or peripheral nervous system that exhibit coherently-oriented axons.


Assuntos
Atlas como Assunto , Axônios/ultraestrutura , Imagem Tridimensional/métodos , Medula Espinal/ultraestrutura , Idoso , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Microscopia Eletrônica de Varredura , Bainha de Mielina/ultraestrutura
14.
Front Neurosci ; 12: 854, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519158

RESUMO

Myelin water imaging can be achieved using multicomponent T2 relaxation analysis to quantify in vivo measurement of myelin content, termed the myelin water fraction (MWF). Therefore, myelin water imaging can be a valuable tool to better understand the underlying white matter pathology in demyelinating diseases, such as multiple sclerosis. To apply myelin water imaging in multisite studies and clinical applications, it must be acquired in a clinically feasible scan time (less than 15 min) and be reproducible across sites and scanner vendors. Here, we assessed the reproducibility of MWF measurements in regional and global white matter in 10 healthy human brains across two sites with two different 3 T magnetic resonance imaging scanner vendors (Philips and Siemens), using a 32-echo gradient and spin echo (GRASE) sequence. A strong correlation was found between the MWF measurements in the global white matter (Pearson's r = 0.91; p < 0.001) for all participants across the two sites. The mean intersite MWF coefficient of variation across participants was 2.77% in the global white matter and ranged from 4.47% (splenium of the corpus callosum) to 17.89% (genu of the corpus callosum) in white matter regions of interest. Bland-Altman analysis showed a good agreement in MWF measurements between the two sites with small bias of 0.002. Overall, MWF estimates were in good agreement across the two sites and scanner vendors. Our findings support the use of quantitative multi-echo T2 relaxation metrics, such as the MWF, in multicenter studies and clinical trials to gain deeper understanding about the pathological processes resulting from the underlying disease progression in neurodegenerative diseases.

15.
Neuroimage Clin ; 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30522974

RESUMO

Spinal muscular atrophy (SMA) type III and IV are autosomal recessive, slowly progressive lower motor neuron syndromes. Nevertheless, wider cerebral involvement has been consistently reported in mouse models. The objective of this study is the characterisation of spinal and cerebral pathology in adult forms of SMA using multimodal quantitative imaging. METHODS: Twenty-five type III and IV adult SMA patients and 25 age-matched healthy controls were enrolled in a spinal cord and brain imaging study. Structural measures of grey and white matter involvement and diffusion parameters of white matter integrity were evaluated at each cervical spinal level. Whole-brain and region-of-interest analyses were also conducted in the brain to explore cortical thickness, grey matter density and tract-based white matter alterations. RESULTS: In the spinal cord, considerable grey matter atrophy was detected between C2-C6 vertebral levels. In the brain, increased grey matter density was detected in motor and extra-motor regions of SMA patients. No white matter pathology was identified neither at brain and spinal level. CONCLUSIONS: Adult forms of SMA are associated with selective grey matter degeneration in the spinal cord with preserved white matter integrity. The observed increased grey matter density in the motor cortex may represent adaptive reorganisation.

16.
Neuroimage ; 186: 577-585, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30448213

RESUMO

BACKGROUND AND PURPOSE: The stiffness of large arteries and increased pulsatility can have an impact on the brain white matter (WM) microstructure, however those mechanisms are still poorly understood. The aim of this study was to investigate the association between central artery stiffness, axonal and myelin integrity in 54 cognitively unimpaired elderly subjects (65-75 years old). METHODS: The neuronal fiber integrity of brain WM was assessed using diffusion tensor metrics and magnetization transfer imaging as measures of axonal organization (Fractional anisotropy, Radial diffusivity) and state of myelination (Myelin volume fraction). Central artery stiffness was measured by carotid-femoral pulse wave velocity (cfPWV). Statistical analyses included 4 regions (the corpus callosum, the internal capsule, the corona radiata and the superior longitudinal fasciculus) which have been previously denoted as vulnerable to increased central artery stiffness. RESULTS: cfPWV was significantly associated with fractional anisotropy and radial diffusivity (p < 0.05, corrected for multiple comparisons) but not with myelin volume fraction. Findings from this study also show that improved executive function performance correlates with Fractional anisotropy positively (p < 0.05 corrected) as well as with myelin volume fraction and radial diffusivity negatively (p < 0.05 corrected). CONCLUSIONS: These findings suggest that arterial stiffness is associated with axon degeneration rather than demyelination. Controlling arterial stiffness may play a role in maintaining the health of WM axons in the aging brain.

18.
J Neurotrauma ; 35(16): 1942-1957, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30074873

RESUMO

Magnetic resonance imaging (MRI) has transformed the way surgeons and researchers study and treat spinal cord injury. In this narrative review, we explore the historical context of imaging the human spinal cord and describe how MRI has evolved from providing the first visualization of the human spinal cord in the 1980s to a remarkable set of imaging tools today. The article focuses in particular on the role of Canadian researchers to this field. We begin by outlining the clinical context of traumatic injury to the human spinal cord and describe why current MRI standards fall short when it comes to treating this disabling condition. Parts 2 and 3 of this work explore an exciting and dramatic shift in the use of MRI technology to aid in our understanding and treatment of traumatic injury to the spinal cord. We explore the use of functional imaging (part 2) and structural imaging (part 3) and explore how these techniques have evolved, how they are used, and the challenges that we face for continued refinement and application to patients who live with the neurological and functional deficits caused by injury to the delicate spinal cord.

19.
Neuroimage Clin ; 18: 963-971, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29876281

RESUMO

The human spinal cord is a central nervous system structure that plays an important role in normal motor and sensory function, and can be affected by many debilitating neurologic diseases. Due to its clinical importance, the spinal cord is frequently the subject of imaging research. Common methods for visualizing spinal cord anatomy and pathology include histology and magnetic resonance imaging (MRI), both of which have unique benefits and drawbacks. Postmortem microscopic resolution MRI of fixed specimens, sometimes referred to as magnetic resonance microscopy (MRM), combines many of the benefits inherent to both techniques. However, the elongated shape of the human spinal cord, along with hardware and scan time limitations, have restricted previous microscopic resolution MRI studies (both in vivo and ex vivo) to small sections of the cord. Here we present the first MRM dataset of the entire postmortem human spinal cord. These data include 50 µm isotropic resolution anatomic image data and 100 µm isotropic resolution diffusion data, made possible by a 280 h long multi-segment acquisition and automated image segment composition. We demonstrate the use of these data for spinal cord lesion detection, automated volumetric gray matter segmentation, and quantitative spinal cord morphometry including estimates of cross sectional dimensions and gray matter fraction throughout the length of the cord.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA