Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Hum Mol Genet ; 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33611520

RESUMO

BACKGROUND: Integration of functional genomic annotations when estimating polygenic risk scores (PRS) can provide insight into aetiology and improve risk prediction. This study explores the predictive utility of gene expression risk scores (GeRS), calculated using imputed gene expression and transcriptome-wide association study (TWAS) results. METHODS: The predictive utility of GeRS was evaluated using 12 neuropsychiatric and anthropometric outcomes measured in two target samples: UK Biobank and the Twins Early Development Study (TEDS). GeRS were calculated based on imputed gene expression levels and TWAS results, using 53 gene expression-genotype panels, termed SNP-weight sets, capturing expression across a range of tissues. We compare the predictive utility of elastic net models containing GeRS within and across SNP-weight sets, and models containing both GeRS and PRS. We estimate the proportion of SNP-based heritability attributable to cis-regulated gene expression. RESULTS: GeRS significantly predicted a range of outcomes, with elastic net models combining GeRS across SNP-weight sets improving prediction. GeRS were less predictive than PRS, but models combining GeRS and PRS improved prediction for several outcomes, with relative improvements ranging from 0.3% for Height (p = 0.023) to 4% for Rheumatoid Arthritis (p = 5.9 × 10-8). The proportion of SNP-based heritability attributable to cis-regulated expression was modest for most outcomes, even when restricting GeRS to colocalised genes. CONCLUSION: GeRS represent a component of PRS and could be useful for functional stratification of genetic risk. Only in specific circumstances can GeRS substantially improve prediction over PRS alone. Future research considering functional genomic annotations when estimating genetic risk is warranted.

2.
Addict Biol ; 26(1): e12880, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32064741

RESUMO

Eating disorders and substance use disorders frequently co-occur. Twin studies reveal shared genetic variance between liabilities to eating disorders and substance use, with the strongest associations between symptoms of bulimia nervosa and problem alcohol use (genetic correlation [rg ], twin-based = 0.23-0.53). We estimated the genetic correlation between eating disorder and substance use and disorder phenotypes using data from genome-wide association studies (GWAS). Four eating disorder phenotypes (anorexia nervosa [AN], AN with binge eating, AN without binge eating, and a bulimia nervosa factor score), and eight substance-use-related phenotypes (drinks per week, alcohol use disorder [AUD], smoking initiation, current smoking, cigarettes per day, nicotine dependence, cannabis initiation, and cannabis use disorder) from eight studies were included. Significant genetic correlations were adjusted for variants associated with major depressive disorder and schizophrenia. Total study sample sizes per phenotype ranged from ~2400 to ~537 000 individuals. We used linkage disequilibrium score regression to calculate single nucleotide polymorphism-based genetic correlations between eating disorder- and substance-use-related phenotypes. Significant positive genetic associations emerged between AUD and AN (rg = 0.18; false discovery rate q = 0.0006), cannabis initiation and AN (rg = 0.23; q < 0.0001), and cannabis initiation and AN with binge eating (rg = 0.27; q = 0.0016). Conversely, significant negative genetic correlations were observed between three nondiagnostic smoking phenotypes (smoking initiation, current smoking, and cigarettes per day) and AN without binge eating (rgs = -0.19 to -0.23; qs < 0.04). The genetic correlation between AUD and AN was no longer significant after co-varying for major depressive disorder loci. The patterns of association between eating disorder- and substance-use-related phenotypes highlights the potentially complex and substance-specific relationships among these behaviors.

3.
Nat Genet ; 52(12): 1303-1313, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33199917

RESUMO

Rupture of an intracranial aneurysm leads to subarachnoid hemorrhage, a severe type of stroke. To discover new risk loci and the genetic architecture of intracranial aneurysms, we performed a cross-ancestry, genome-wide association study in 10,754 cases and 306,882 controls of European and East Asian ancestry. We discovered 17 risk loci, 11 of which are new. We reveal a polygenic architecture and explain over half of the disease heritability. We show a high genetic correlation between ruptured and unruptured intracranial aneurysms. We also find a suggestive role for endothelial cells by using gene mapping and heritability enrichment. Drug-target enrichment shows pleiotropy between intracranial aneurysms and antiepileptic and sex hormone drugs, providing insights into intracranial aneurysm pathophysiology. Finally, genetic risks for smoking and high blood pressure, the two main clinical risk factors, play important roles in intracranial aneurysm risk, and drive most of the genetic correlation between intracranial aneurysms and other cerebrovascular traits.

4.
PLoS Genet ; 16(11): e1009153, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33201880

RESUMO

Polygenic scores are increasingly powerful predictors of educational achievement. It is unclear, however, how sets of polygenic scores, which partly capture environmental effects, perform jointly with sets of environmental measures, which are themselves heritable, in prediction models of educational achievement. Here, for the first time, we systematically investigate gene-environment correlation (rGE) and interaction (GxE) in the joint analysis of multiple genome-wide polygenic scores (GPS) and multiple environmental measures as they predict tested educational achievement (EA). We predict EA in a representative sample of 7,026 16-year-olds, with 20 GPS for psychiatric, cognitive and anthropometric traits, and 13 environments (including life events, home environment, and SES) measured earlier in life. Environmental and GPS predictors were modelled, separately and jointly, in penalized regression models with out-of-sample comparisons of prediction accuracy, considering the implications that their interplay had on model performance. Jointly modelling multiple GPS and environmental factors significantly improved prediction of EA, with cognitive-related GPS adding unique independent information beyond SES, home environment and life events. We found evidence for rGE underlying variation in EA (rGE = .38; 95% CIs = .30, .45). We estimated that 40% (95% CIs = 31%, 50%) of the polygenic scores effects on EA were mediated by environmental effects, and in turn that 18% (95% CIs = 12%, 25%) of environmental effects were accounted for by the polygenic model, indicating genetic confounding. Lastly, we did not find evidence that GxE effects significantly contributed to multivariable prediction. Our multivariable polygenic and environmental prediction model suggests widespread rGE and unsystematic GxE contributions to EA in adolescence.

5.
Behav Genet ; 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33141367

RESUMO

The relationship between genetic and environmental risk is complex and for many traits, estimates of genetic effects may be inflated by passive gene-environment correlation. This arises because biological offspring inherit both their genotypes and rearing environment from their parents. We tested for passive gene-environment correlation in adult body composition traits using the 'natural experiment' of childhood adoption, which removes passive gene-environment correlation within families. Specifically, we compared 6165 adoptees with propensity score matched non-adoptees in the UK Biobank. We also tested whether passive gene-environment correlation inflates the association between psychiatric genetic risk and body composition. We found no evidence for inflation of heritability or polygenic scores in non-adoptees compared to adoptees for a range of body composition traits. Furthermore, polygenic risk scores for anorexia nervosa, attention-deficit/hyperactivity disorder and schizophrenia did not differ in their influence on body composition traits in adoptees and non-adoptees. These findings suggest that passive gene-environment correlation does not inflate genetic effects for body composition, or the influence of psychiatric disorder genetic risk on body composition. Our design does not look at passive gene-environment correlation in childhood, and does not test for 'pure' environmental effects or the effects of active and evocative gene-environment correlations, where child genetics directly influences home environment. However, these findings suggest that genetic influences identified for body composition in this adult sample are direct, and not confounded by the family environment provided by biological relatives.

6.
Cell Rep ; 33(4): 108323, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33113361

RESUMO

We meta-analyze amyotrophic lateral sclerosis (ALS) genome-wide association study (GWAS) data of European and Chinese populations (84,694 individuals). We find an additional significant association between rs58854276 spanning ACSL5-ZDHHC6 with ALS (p = 8.3 × 10-9), with replication in an independent Australian cohort (1,502 individuals; p = 0.037). Moreover, B4GALNT1, G2E3-SCFD1, and TRIP11-ATXN3 are identified using a gene-based analysis. ACSL5 has been associated with rapid weight loss, as has another ALS-associated gene, GPX3. Weight loss is frequent in ALS patients and is associated with shorter survival. We investigate the effect of the ACSL5 and GPX3 single-nucleotide polymorphisms (SNPs), using longitudinal body composition and weight data of 77 patients and 77 controls. In patients' fat-free mass, although not significant, we observe an effect in the expected direction (rs58854276: -2.1 ± 1.3 kg/A allele, p = 0.053; rs3828599: -1.0 ± 1.3 kg/A allele, p = 0.22). No effect was observed in controls. Our findings support the increasing interest in lipid metabolism in ALS and link the disease genetics to weight loss in patients.

7.
Am J Psychiatry ; 177(10): 944-954, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32791893

RESUMO

OBJECTIVE: Efforts to prevent depression, the leading cause of disability worldwide, have focused on a limited number of candidate factors. Using phenotypic and genomic data from over 100,000 UK Biobank participants, the authors sought to systematically screen and validate a wide range of potential modifiable factors for depression. METHODS: Baseline data were extracted for 106 modifiable factors, including lifestyle (e.g., exercise, sleep, media, diet), social (e.g., support, engagement), and environmental (e.g., green space, pollution) variables. Incident depression was defined as minimal depressive symptoms at baseline and clinically significant depression at follow-up. At-risk individuals for incident depression were identified by polygenic risk scores or by reported traumatic life events. An exposure-wide association scan was conducted to identify factors associated with incident depression in the full sample and among at-risk individuals. Two-sample Mendelian randomization was then used to validate potentially causal relationships between identified factors and depression. RESULTS: Numerous factors across social, sleep, media, dietary, and exercise-related domains were prospectively associated with depression, even among at-risk individuals. However, only a subset of factors was supported by Mendelian randomization evidence, including confiding in others (odds ratio=0.76, 95% CI=0.67, 0.86), television watching time (odds ratio=1.09, 95% CI=1.05, 1.13), and daytime napping (odds ratio=1.34, 95% CI=1.17, 1.53). CONCLUSIONS: Using a two-stage approach, this study validates several actionable targets for preventing depression. It also demonstrates that not all factors associated with depression in observational research may translate into robust targets for prevention. A large-scale exposure-wide approach combined with genetically informed methods for causal inference may help prioritize strategies for multimodal prevention in psychiatry.


Assuntos
Depressão/prevenção & controle , Adulto , Bases de Dados como Assunto , Depressão/etiologia , Depressão/genética , Dieta , Exercício Físico/psicologia , Feminino , Humanos , Masculino , Análise da Randomização Mendeliana , Herança Multifatorial/genética , Fatores de Risco , Tempo de Tela , Higiene do Sono
8.
Am J Med Genet B Neuropsychiatr Genet ; 183(6): 309-330, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32681593

RESUMO

It is imperative to understand the specific and shared etiologies of major depression and cardio-metabolic disease, as both traits are frequently comorbid and each represents a major burden to society. This study examined whether there is a genetic association between major depression and cardio-metabolic traits and if this association is stratified by age at onset for major depression. Polygenic risk scores analysis and linkage disequilibrium score regression was performed to examine whether differences in shared genetic etiology exist between depression case control status (N cases = 40,940, N controls = 67,532), earlier (N = 15,844), and later onset depression (N = 15,800) with body mass index, coronary artery disease, stroke, and type 2 diabetes in 11 data sets from the Psychiatric Genomics Consortium, Generation Scotland, and UK Biobank. All cardio-metabolic polygenic risk scores were associated with depression status. Significant genetic correlations were found between depression and body mass index, coronary artery disease, and type 2 diabetes. Higher polygenic risk for body mass index, coronary artery disease, and type 2 diabetes was associated with both early and later onset depression, while higher polygenic risk for stroke was associated with later onset depression only. Significant genetic correlations were found between body mass index and later onset depression, and between coronary artery disease and both early and late onset depression. The phenotypic associations between major depression and cardio-metabolic traits may partly reflect their overlapping genetic etiology irrespective of the age depression first presents.

9.
Psychol Med ; : 1-11, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32624019

RESUMO

BACKGROUND: Depression is a highly prevalent and heterogeneous disorder. This study aims to determine whether depression with atypical features shows different heritability and different degree of overlap with polygenic risk for psychiatric and immuno-metabolic traits than other depression subgroups. METHODS: Data included 30 069 European ancestry individuals from the UK Biobank who met criteria for lifetime major depression. Participants reporting both weight gain and hypersomnia were classified as ↑WS depression (N = 1854) and the others as non-↑WS depression (N = 28 215). Cases with non-↑WS depression were further classified as ↓WS depression (i.e. weight loss and insomnia; N = 10 142). Polygenic risk scores (PRS) for 22 traits were generated using genome-wide summary statistics (Bonferroni corrected p = 2.1 × 10-4). Single-nucleotide polymorphism (SNP)-based heritability of depression subgroups was estimated. RESULTS: ↑WS depression had a higher polygenic risk for BMI [OR = 1.20 (1.15-1.26), p = 2.37 × 10-14] and C-reactive protein [OR = 1.11 (1.06-1.17), p = 8.86 × 10-06] v. non-↑WS depression and ↓WS depression. Leptin PRS was close to the significance threshold (p = 2.99 × 10-04), but the effect disappeared when considering GWAS summary statistics of leptin adjusted for BMI. PRS for daily alcohol use was inversely associated with ↑WS depression [OR = 0.88 (0.83-0.93), p = 1.04 × 10-05] v. non-↑WS depression. SNP-based heritability was not significantly different between ↑WS depression and ↓WS depression (14.3% and 12.2%, respectively). CONCLUSIONS: ↑WS depression shows evidence of distinct genetic predisposition to immune-metabolic traits and alcohol consumption. These genetic signals suggest that biological targets including immune-cardio-metabolic pathways may be relevant to therapies in individuals with ↑WS depression.

10.
Psychol Med ; : 1-10, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32519625

RESUMO

BACKGROUND: Major depression (MD) is often characterised as a categorical disorder; however, observational studies comparing sub-threshold and clinical depression suggest MD is continuous. Many of these studies do not explore the full continuum and are yet to consider genetics as a risk factor. This study sought to understand if polygenic risk for MD could provide insight into the continuous nature of depression. METHODS: Factor analysis on symptom-level data from the UK Biobank (N = 148 957) was used to derive continuous depression phenotypes which were tested for association with polygenic risk scores (PRS) for a categorical definition of MD (N = 119 692). RESULTS: Confirmatory factor analysis showed a five-factor hierarchical model, incorporating 15 of the original 18 items taken from the PHQ-9, GAD-7 and subjective well-being questionnaires, produced good fit to the observed covariance matrix (CFI = 0.992, TLI = 0.99, RMSEA = 0.038, SRMR = 0.031). MD PRS associated with each factor score (standardised ß range: 0.057-0.064) and the association remained when the sample was stratified into case- and control-only subsets. The case-only subset had an increased association compared to controls for all factors, shown via a significant interaction between lifetime MD diagnosis and MD PRS (p value range: 2.23 × 10-3-3.94 × 10-7). CONCLUSIONS: An association between MD PRS and a continuous phenotype of depressive symptoms in case- and control-only subsets provides support against a purely categorical phenotype; indicating further insights into MD can be obtained when this within-group variation is considered. The stronger association within cases suggests this variation may be of particular importance.

11.
PLoS Med ; 17(6): e1003137, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32479557

RESUMO

BACKGROUND: Identifying causal risk factors for self-harm is essential to inform preventive interventions. Epidemiological studies have identified risk factors associated with self-harm, but these associations can be subject to confounding. By implementing genetically informed methods to better account for confounding, this study aimed to better identify plausible causal risk factors for self-harm. METHODS AND FINDINGS: Using summary statistics from 24 genome-wide association studies (GWASs) comprising 16,067 to 322,154 individuals, polygenic scores (PSs) were generated to index 24 possible individual risk factors for self-harm (i.e., mental health vulnerabilities, substance use, cognitive traits, personality traits, and physical traits) among a subset of UK Biobank participants (N = 125,925, 56.2% female) who completed an online mental health questionnaire in the period from 13 July 2016 to 27 July 2017. In total, 5,520 (4.4%) of these participants reported having self-harmed in their lifetime. In binomial regression models, PSs indexing 6 risk factors (major depressive disorder [MDD], attention deficit/hyperactivity disorder [ADHD], bipolar disorder, schizophrenia, alcohol dependence disorder, and lifetime cannabis use) predicted self-harm, with effect sizes ranging from odds ratio (OR) = 1.05 (95% CI 1.02 to 1.07, q = 0.008) for lifetime cannabis use to OR = 1.20 (95% CI 1.16 to 1.23, q = 1.33 × 10-35) for MDD. No systematic differences emerged between suicidal and non-suicidal self-harm. To further probe causal relationships, two-sample Mendelian randomisation (MR) analyses were conducted, with MDD, ADHD, and schizophrenia emerging as the most plausible causal risk factors for self-harm. The genetic liabilities for MDD and schizophrenia were associated with self-harm independently of diagnosis and medication. Main limitations include the lack of representativeness of the UK Biobank sample, that self-harm was self-reported, and the limited power of some of the included GWASs, potentially leading to possible type II error. CONCLUSIONS: In addition to confirming the role of MDD, we demonstrate that ADHD and schizophrenia likely play a role in the aetiology of self-harm using multivariate genetic designs for causal inference. Among the many individual risk factors we simultaneously considered, our findings suggest that systematic detection and treatment of core psychiatric symptoms, including psychotic and impulsivity symptoms, may be beneficial among people at risk for self-harm.


Assuntos
Comportamento Autodestrutivo/genética , Idoso , Idoso de 80 Anos ou mais , Transtorno do Deficit de Atenção com Hiperatividade/complicações , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno Bipolar/complicações , Transtorno Bipolar/genética , Bases de Dados como Assunto , Transtorno Depressivo Maior/complicações , Transtorno Depressivo Maior/genética , Feminino , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Modelos Logísticos , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Herança Multifatorial/genética , Fatores de Risco , Esquizofrenia , Comportamento Autodestrutivo/epidemiologia , Comportamento Autodestrutivo/etiologia , Transtornos Relacionados ao Uso de Substâncias/complicações , Transtornos Relacionados ao Uso de Substâncias/genética , Inquéritos e Questionários , Reino Unido/epidemiologia
13.
Transl Psychiatry ; 10(1): 163, 2020 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448866

RESUMO

Depression is a common and clinically heterogeneous mental health disorder that is frequently comorbid with other diseases and conditions. Stratification of depression may align sub-diagnoses more closely with their underling aetiology and provide more tractable targets for research and effective treatment. In the current study, we investigated whether genetic data could be used to identify subgroups within people with depression using the UK Biobank. Examination of cross-locus correlations were used to test for evidence of subgroups using genetic data from seven other complex traits and disorders that were genetically correlated with depression and had sufficient power (>0.6) for detection. We found no evidence for subgroups within depression for schizophrenia, bipolar disorder, attention deficit/hyperactivity disorder, autism spectrum disorder, anorexia nervosa, inflammatory bowel disease or obesity. This suggests that for these traits, genetic correlations with depression were driven by pleiotropic genetic variants carried by everyone rather than by a specific subgroup.

15.
Psychol Sci ; 31(5): 582-591, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32302253

RESUMO

Polygenic scores now explain approximately 10% of the variation in educational attainment. However, they capture not only genetic propensity but also information about the family environment. This is because of passive gene-environment correlation, whereby the correlation between offspring and parent genotypes results in an association between offspring genotypes and the rearing environment. We measured passive gene-environment correlation using information on 6,311 adoptees in the UK Biobank. Adoptees' genotypes were less correlated with their rearing environments because they did not share genes with their adoptive parents. We found that polygenic scores were twice as predictive of years of education in nonadopted individuals compared with adoptees (R2s = .074 vs. .037, p = 8.23 × 10-24). Individuals in the lowest decile of polygenic scores for education attained significantly more education if they were adopted, possibly because of educationally supportive adoptive environments. Overall, these results suggest that genetic influences on education are mediated via the home environment.

16.
BJPsych Open ; 6(2): e18, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32026800

RESUMO

BACKGROUND: UK Biobank is a well-characterised cohort of over 500 000 participants including genetics, environmental data and imaging. An online mental health questionnaire was designed for UK Biobank participants to expand its potential. AIMS: Describe the development, implementation and results of this questionnaire. METHOD: An expert working group designed the questionnaire, using established measures where possible, and consulting a patient group. Operational criteria were agreed for defining likely disorder and risk states, including lifetime depression, mania/hypomania, generalised anxiety disorder, unusual experiences and self-harm, and current post-traumatic stress and hazardous/harmful alcohol use. RESULTS: A total of 157 366 completed online questionnaires were available by August 2017. Participants were aged 45-82 (53% were ≥65 years) and 57% women. Comparison of self-reported diagnosed mental disorder with a contemporary study shows a similar prevalence, despite respondents being of higher average socioeconomic status. Lifetime depression was a common finding, with 24% (37 434) of participants meeting criteria and current hazardous/harmful alcohol use criteria were met by 21% (32 602), whereas other criteria were met by less than 8% of the participants. There was extensive comorbidity among the syndromes. Mental disorders were associated with a high neuroticism score, adverse life events and long-term illness; addiction and bipolar affective disorder in particular were associated with measures of deprivation. CONCLUSIONS: The UK Biobank questionnaire represents a very large mental health survey in itself, and the results presented here show high face validity, although caution is needed because of selection bias. Built into UK Biobank, these data intersect with other health data to offer unparalleled potential for crosscutting biomedical research involving mental health.

17.
Transl Psychiatry ; 10(1): 38, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-32066696

RESUMO

Childhood maltreatment is highly prevalent and serves as a risk factor for mental and physical disorders. Self-reported childhood maltreatment appears heritable, but the specific genetic influences on this phenotype are largely unknown. The aims of this study were to (1) identify genetic variation associated with self-reported childhood maltreatment, (2) estimate SNP-based heritability (h2snp), (3) assess predictive value of polygenic risk scores (PRS) for childhood maltreatment, and (4) quantify genetic overlap of childhood maltreatment with mental and physical health-related phenotypes, and condition the top hits from our analyses when such overlap is present. Genome-wide association analysis for childhood maltreatment was undertaken, using a discovery sample from the UK Biobank (UKBB) (n = 124,000) and a replication sample from the Psychiatric Genomics Consortium-posttraumatic stress disorder group (PGC-PTSD) (n = 26,290). h2snp for childhood maltreatment and genetic correlations with mental/physical health traits were calculated using linkage disequilibrium score regression. PRS was calculated using PRSice and mtCOJO was used to perform conditional analysis. Two genome-wide significant loci associated with childhood maltreatment (rs142346759, p = 4.35 × 10-8, FOXP1; rs10262462, p = 3.24 × 10-8, FOXP2) were identified in the discovery dataset but were not replicated in PGC-PTSD. h2snp for childhood maltreatment was ~6% and the PRS derived from the UKBB was significantly predictive of childhood maltreatment in PGC-PTSD (r2 = 0.0025; p = 1.8 × 10-15). The most significant genetic correlation of childhood maltreatment was with depressive symptoms (rg = 0.70, p = 4.65 × 10-40), although we show evidence that our top hits may be specific to childhood maltreatment. This is the first large-scale genetic study to identify specific variants associated with self-reported childhood maltreatment. Speculatively, FOXP genes might influence externalizing traits and so be relevant to childhood maltreatment. Alternatively, these variants may be associated with a greater likelihood of reporting maltreatment. A clearer understanding of the genetic relationships of childhood maltreatment, including particular abuse subtypes, with a range of phenotypes, may ultimately be useful in in developing targeted treatment and prevention strategies.

18.
Depress Anxiety ; 37(6): 512-520, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31951317

RESUMO

BACKGROUND: Anxiety and depressive disorders can be classified under a bidimensional model, where depression and generalized anxiety disorder are represented by distress and the other anxiety disorders, by fear. The phenotypic structure of this model has been validated, but twin studies only show partial evidence for genetic and environmental distinctions between distress and fear. Moreover, the effects of genetic variants are mostly shared between anxiety and depression, but the genome-wide genetic distinction between distress and fear remains unexplored. This study aimed to examine the degree of common genetic variation overlap between distress and fear, and their associations with the psychosocial risk factors of loneliness and social isolation. METHODS: We used genome-wide data from 157,366 individuals in the UK Biobank who answered a mental health questionnaire. RESULTS: Genetic correlations indicated that depression and generalized anxiety had a substantial genetic overlap, and that they were genetically partially distinct from fear disorders. Associations with loneliness, but not social isolation, showed that loneliness was more strongly associated with both distress disorders than with fear. CONCLUSIONS: Our findings shed light on genetic and environmental mechanisms that are common and unique to distress and fear and contribute to current knowledge on individuals' susceptibility to anxiety and depression.


Assuntos
Bancos de Espécimes Biológicos , Depressão , Ansiedade/genética , Transtornos de Ansiedade/genética , Depressão/genética , Humanos , Reino Unido
19.
Biol Psychiatry ; 88(2): 169-184, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31926635

RESUMO

BACKGROUND: Mood disorders (including major depressive disorder and bipolar disorder) affect 10% to 20% of the population. They range from brief, mild episodes to severe, incapacitating conditions that markedly impact lives. Multiple approaches have shown considerable sharing of risk factors across mood disorders despite their diagnostic distinction. METHODS: To clarify the shared molecular genetic basis of major depressive disorder and bipolar disorder and to highlight disorder-specific associations, we meta-analyzed data from the latest Psychiatric Genomics Consortium genome-wide association studies of major depression (including data from 23andMe) and bipolar disorder, and an additional major depressive disorder cohort from UK Biobank (total: 185,285 cases, 439,741 controls; nonoverlapping N = 609,424). RESULTS: Seventy-three loci reached genome-wide significance in the meta-analysis, including 15 that are novel for mood disorders. More loci from the Psychiatric Genomics Consortium analysis of major depression than from that for bipolar disorder reached genome-wide significance. Genetic correlations revealed that type 2 bipolar disorder correlates strongly with recurrent and single-episode major depressive disorder. Systems biology analyses highlight both similarities and differences between the mood disorders, particularly in the mouse brain cell types implicated by the expression patterns of associated genes. The mood disorders also differ in their genetic correlation with educational attainment-the relationship is positive in bipolar disorder but negative in major depressive disorder. CONCLUSIONS: The mood disorders share several genetic associations, and genetic studies of major depressive disorder and bipolar disorder can be combined effectively to enable the discovery of variants not identified by studying either disorder alone. However, we demonstrate several differences between these disorders. Analyzing subtypes of major depressive disorder and bipolar disorder provides evidence for a genetic mood disorders spectrum.

20.
Mol Psychiatry ; 25(7): 1430-1446, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31969693

RESUMO

Depression is more frequent among individuals exposed to traumatic events. Both trauma exposure and depression are heritable. However, the relationship between these traits, including the role of genetic risk factors, is complex and poorly understood. When modelling trauma exposure as an environmental influence on depression, both gene-environment correlations and gene-environment interactions have been observed. The UK Biobank concurrently assessed Major Depressive Disorder (MDD) and self-reported lifetime exposure to traumatic events in 126,522 genotyped individuals of European ancestry. We contrasted genetic influences on MDD stratified by reported trauma exposure (final sample size range: 24,094-92,957). The SNP-based heritability of MDD with reported trauma exposure (24%) was greater than MDD without reported trauma exposure (12%). Simulations showed that this is not confounded by the strong, positive genetic correlation observed between MDD and reported trauma exposure. We also observed that the genetic correlation between MDD and waist circumference was only significant in individuals reporting trauma exposure (rg = 0.24, p = 1.8 × 10-7 versus rg = -0.05, p = 0.39 in individuals not reporting trauma exposure, difference p = 2.3 × 10-4). Our results suggest that the genetic contribution to MDD is greater when reported trauma is present, and that a complex relationship exists between reported trauma exposure, body composition, and MDD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA