Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Mais filtros

Base de dados
Intervalo de ano de publicação
Nat Commun ; 13(1): 5275, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071065


Lithium-rich disordered rocksalt cathodes display high capacities arising from redox chemistry on both transition-metal ions (TM-redox) and oxygen ions (O-redox), making them promising candidates for next-generation lithium-ion batteries. However, the atomic-scale mechanisms governing O-redox behaviour in disordered structures are not fully understood. Here we show that, at high states of charge in the disordered rocksalt Li2MnO2F, transition metal migration is necessary for the formation of molecular O2 trapped in the bulk. Density functional theory calculations reveal that O2 is thermodynamically favoured over other oxidised O species, which is confirmed by resonant inelastic X-ray scattering data showing only O2 forms. When O-redox involves irreversible Mn migration, this mechanism results in a path-dependent voltage hysteresis between charge and discharge, commensurate with the hysteresis observed electrochemically. The implications are that irreversible transition metal migration should be suppressed to reduce the voltage hysteresis that afflicts O-redox disordered rocksalt cathodes.

Phys Rev Lett ; 127(13): 135502, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34623837


Polycrystalline solids can exhibit material properties that differ significantly from those of equivalent single-crystal samples, in part, because of a spontaneous redistribution of mobile point defects into so-called space-charge regions adjacent to grain boundaries. The general analytical form of these space-charge regions is known only in the dilute limit, where defect-defect correlations can be neglected. Using kinetic Monte Carlo simulations of a three-dimensional Coulomb lattice gas, we show that grain boundary space-charge regions in nondilute solid electrolytes exhibit overscreening-damped oscillatory space-charge profiles-and underscreening-decay lengths that are longer than the corresponding Debye length and that increase with increasing defect-defect interaction strength. Overscreening and underscreening are known phenomena in concentrated liquid electrolytes, and the observation of functionally analogous behavior in solid electrolyte space-charge regions suggests that the same underlying physics drives behavior in both classes of systems. We therefore expect theoretical approaches developed to study nondilute liquid electrolytes to be equally applicable to future studies of solid electrolytes.

J Phys Chem B ; 124(9): 1778-1786, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32031810


We study the correlation length of the charge-charge pair correlations in concentrated electrolyte solutions by means of all-atom, explicit-solvent molecular dynamics simulations. We investigate LiCl and NaI in water, which constitute highly soluble, prototypical salts for experiments, as well as two more complex, molecular electrolyte systems of lithium bis(trifluoromethane)sulfonimide (LiTFSI), a salt commonly employed in electrochemical storage systems, in water, and in an organic solvent mixture of dimethoxyethane and dioxolane. Our simulations support the recent experimental observations as well as theoretical predictions of a nonmonotonic behavior of the correlation length with increasing salt concentration. We observe a Debye-Hückel like regime at low concentration, followed by a minimum reached when d/λD ≃ 1, where λD is the Debye correlation length and d is the effective ionic diameter, and an increasing correlation length with salt concentration in very concentrated electrolytes. As in the experiments, we find that the screening length in the concentrated regime follows a universal scaling law as a function d/λD for all studied salts. However, the scaling exponent is significantly lower than the experimentally measured one and lies in the range of the theoretical predictions based on much simpler electrolyte models.

Faraday Discuss ; 206: 427-442, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28933495


Many applications of ionic liquids involve their mixtures with neutral molecular solvents. The chemical physics of these high-concentration electrolytes, in particular at interfaces, still holds many challenges. In this contribution we begin to unravel the relationship between measurements of structural ('solvation') forces in mixtures of ionic liquid with polar solvent and the corresponding structure determined by molecular dynamics simulations of the same mixtures. In order to make the quantitative link between experiments with mica surfaces and simulations with fixed-charge surfaces, we present an experimental procedure for determining the effective surface charge on mica in ionic liquid. We find that a structural cross-over recently inferred from force measurements appears to be supported by the simulations: at the cross-over, the charge-oscillatory structure switches to charge-monotonic, and solvent layering becomes dominant. Finally, we map out a phase diagram in composition-surface charge space delineating regions of charge-oscillatory interfacial structure and regions of charge-monotonic decay. We note that these features of structure and oscillatory forces are distinct from (acting simultaneously with) the recently reported longer range monotonic forces arising from anomalously long bulk screening lengths in high-concentration electrolytes.

Phys Chem Chem Phys ; 19(18): 11004-11010, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28422218


Solvate ionic liquids are a subclass of ionic liquids that have the potential to be used in a range of electrochemical devices. We present molecular dynamics simulations of the interfacial structure of thin films of one such lithium based solvate ionic liquid, [Li(G4)][TFSI], an equimolar solution of tetraglyme and lithium bistriflimide. This solvate ionic liquid is shown to form a novel interfacial structure at a plane electrode, which differs in a number of ways from the nanostructure observed for a conventional ionic liquid at similar interfaces. This paper explores the structural composition of the interfacial layers of this solvate ionic liquid, including their variation with surface charge, and the relation between chemical structure and interfacial arrangement.

Langmuir ; 30(38): 11485-92, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25171130


We report a method for transferring graphene, grown by chemical vapor deposition, which produces ultraflat graphene surfaces (root-mean-square roughness of 0.19 nm) free from polymer residues over macroscopic areas (>1 cm(2)). The critical step in preparing such surfaces involves the use of an intermediate mica template, which itself is atomically smooth. We demonstrate the compatibility of these model surfaces with the surface force balance, opening up the possibility of measuring normal and lateral forces, including friction and adhesion, between two graphene sheets either in contact or across a liquid medium. The conductivity of the graphene surfaces allows forces to be measured while controlling the surface potential. This new apparatus, the graphene surface force balance, is expected to be of importance to the future understanding of graphene in applications from lubrication to electrochemical energy storage systems.