Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Matern Fetal Neonatal Med ; : 1-4, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31510824

RESUMO

Desbuquois dysplasia is a very severe and sometimes lethal form of osteochondrodysplasia characterized by prenatal onset of severe micromelic short stature, joint laxity with multiple joint dislocations, specific radiographic features, and facial dysmorphism. Here, we report a case for which whole exome sequencing allowed early prenatal diagnosis of Desbuquois dysplasia before the detection of characteristic ultrasound signs of the disease.

2.
Genet Med ; 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31388190

RESUMO

PURPOSE: Sifrim-Hitz-Weiss syndrome (SIHIWES) is a recently described multisystemic neurodevelopmental disorder caused by de novo variants in CHD4. In this study, we investigated the clinical spectrum of the disorder, genotype-phenotype correlations, and the effect of different missense variants on CHD4 function. METHODS: We collected clinical and molecular data from 32 individuals with mostly de novo variants in CHD4, identified through next-generation sequencing. We performed adenosine triphosphate (ATP) hydrolysis and nucleosome remodeling assays on variants from five different CHD4 domains. RESULTS: The majority of participants had global developmental delay, mild to moderate intellectual disability, brain anomalies, congenital heart defects, and dysmorphic features. Macrocephaly was a frequent but not universal finding. Additional common abnormalities included hypogonadism in males, skeletal and limb anomalies, hearing impairment, and ophthalmic abnormalities. The majority of variants were nontruncating and affected the SNF2-like region of the protein. We did not identify genotype-phenotype correlations based on the type or location of variants. Alterations in ATP hydrolysis and chromatin remodeling activities were observed in variants from different domains. CONCLUSION: The CHD4-related syndrome is a multisystemic neurodevelopmental disorder. Missense substitutions in different protein domains alter CHD4 function in a variant-specific manner, but result in a similar phenotype in humans.

3.
Clin Genet ; 96(4): 354-358, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31290144

RESUMO

TTI2 (MIM 614126) has been described as responsible for autosomal recessive intellectual disability (ID; MRT39, MIM:615541) in only two inbred families. Here, we give an account of two individuals from two unrelated outbred families harbouring compound heterozygous TTI2 pathogenic variants. Together with severe ID, progressive microcephaly, scoliosis and sleeping disorder are the most striking features in the two individuals concerned. TTI2, together with TTI1 and TELO2, encode proteins that constitute the triple T heterotrimeric complex. This TTT complex interacts with the HSP90 and R2TP to form a super-complex that has a chaperone function stabilising and maturing a number of kinases, such as ataxia-telangiectasia mutated and mechanistic target of rapamycin, which are key regulators of cell proliferation and genome maintenance. Pathogenic variants in TTI2 logically result in a phenotype close to that caused by TELO2 variants.

4.
Nat Commun ; 10(1): 3094, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300657

RESUMO

AMPA receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits encoded by GRIA1-4 genes. GluA2 has an especially important role because, following post-transcriptional editing at the Q607 site, it renders heteromultimeric AMPARs Ca2+-impermeable, with a linear relationship between current and trans-membrane voltage. Here, we report heterozygous de novo GRIA2 mutations in 28 unrelated patients with intellectual disability (ID) and neurodevelopmental abnormalities including autism spectrum disorder (ASD), Rett syndrome-like features, and seizures or developmental epileptic encephalopathy (DEE). In functional expression studies, mutations lead to a decrease in agonist-evoked current mediated by mutant subunits compared to wild-type channels. When GluA2 subunits are co-expressed with GluA1, most GRIA2 mutations cause a decreased current amplitude and some also affect voltage rectification. Our results show that de-novo variants in GRIA2 can cause neurodevelopmental disorders, complementing evidence that other genetic causes of ID, ASD and DEE also disrupt glutamatergic synaptic transmission.


Assuntos
Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Receptores de AMPA/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Heterozigoto , Humanos , Lactente , Mutação com Perda de Função , Imagem por Ressonância Magnética , Masculino , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Adulto Jovem
5.
Hum Mutat ; 40(7): 839-841, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30977936

RESUMO

The pLI score reflects the tolerance of a given gene to the loss of function on the basis of the number of protein truncating variants, that is, the frameshift, splice donor, splice acceptor, and stop-gain variants referenced for this gene in control databases weighted by the size of the gene and the sequencing coverage. It is frequently used to prioritize candidate genes when analyzing whole exome or whole genome data. We list here the main pitfalls to consider before using this score. Concrete illustrations are given for each of these pitfalls.

6.
Eur J Hum Genet ; 27(4): 525-534, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30622331

RESUMO

Split-hand-split-foot malformation (SHFM) is a rare condition that occurs in 1 in 8500-25,000 newborns and accounts for 15% of all limb reduction defects. SHFM is heterogeneous and can be isolated, associated with other malformations, or syndromic. The mode of inheritance is mostly autosomal dominant with incomplete penetrance, but can be X-linked or autosomal recessive. Seven loci are currently known: SHFM1 at 7q21.2q22.1 (DLX5 gene), SHFM2 at Xq26, SHFM3 at 10q24q25, SHFM4 at 3q27 (TP63 gene), SHFM5 at 2q31 and SHFM6 as a result of variants in WNT10B (chromosome 12q13). Duplications at 17p13.3 are seen in SHFM when isolated or associated with long bone deficiency. Tandem genomic duplications at chromosome 10q24 involving at least the DACTYLIN gene are associated with SHFM3. No point variant in any of the genes residing within the region has been identified so far, but duplication of exon 1 of the BTRC gene may explain the phenotype, with likely complex alterations of gene regulation mechanisms that would impair limb morphogenesis. We report on 32 new index cases identified by array-CGH and/or by qPCR, including some prenatal ones, leading to termination for the most severe. Twenty-two cases were presenting with SHFM and 7 with monodactyly only. Three had an overlapping phenotype. Additional findings were identified in 5 (renal dysplasia, cutis aplasia, hypogonadism and agenesis of corpus callosum with hydrocephalus). We present their clinical and radiological findings and review the literature on this rearrangement that seems to be one of the most frequent cause of SHFM.

7.
Genet Med ; 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30393377

RESUMO

PURPOSE: Accurate detection of mitochondrial DNA (mtDNA) alterations is essential for the diagnosis of mitochondrial diseases. The development of high-throughput sequencing technologies has enhanced the detection sensitivity of mtDNA pathogenic variants, but the detection of mtDNA rearrangements, especially multiple deletions, is still poorly processed. Here, we present eKLIPse, a sensitive and specific tool allowing the detection and quantification of large mtDNA rearrangements from single and paired-end sequencing data. METHODS: The methodology was first validated using a set of simulated data to assess the detection sensitivity and specificity, and second with a series of sequencing data from mitochondrial disease patients carrying either single or multiple deletions, related to pathogenic variants in nuclear genes involved in mtDNA maintenance. RESULTS: eKLIPse provides the precise breakpoint positions and the cumulated percentage of mtDNA rearrangements at a given gene location with a detection sensitivity lower than 0.5% mutant. eKLIPse software is available either as a script to be integrated in a bioinformatics pipeline, or as user-friendly graphical interface to visualize the results through a Circos representation ( https://github.com/dooguypapua/eKLIPse ). CONCLUSION: Thus, eKLIPse represents a useful resource to study the causes and consequences of mtDNA rearrangements, for further genotype/phenotype correlations in mitochondrial disorders.

8.
Artigo em Inglês | MEDLINE | ID: mdl-30383237

RESUMO

Issue: To report a homozygous pathogenic variant in PCSK1 in a boy affected with proprotein convertase 1/3 (PC1/3) deficiency. Case description and literature review: A male infant born to consanguineous Turkish parents presented in the first week of life with transient central diabetes insipidus, watery diarrhea, micropenis due to hypogonadotropic hypogonadism and GH deficiency, and transient asymptomatic hypoglycemia. Further endocrine defects gradually appeared, including central hypothyroidism and mild central hypocortisolism (at 1 yr), central diabetes insipidus that reappeared progressively (at 2.5 yr), and obesity (at 2 yr). Whole exome sequencing revealed a homozygous nonsense pathogenic variant (NM_000439.4) c. 595 C>T in exon 5 of PCSK1, not yet reported in cases of proprotein convertase 1/3 (PC1/3) deficiency. To date, 26 cases of PC1/3 deficiency have been reported in the literature. All individuals had early and severe malabsorptive diarrhea and 83% had polyuria-polydipsia syndrome (before 5 yr). Most (79%) had early-onset obesity. Various endocrine disorders were present, including growth hormone deficiency (44%), mild central hypothyroidism (56%), central hypogonadism (44%), central hypocortisolism (57%), and postprandial hypoglycemia (52%). When described (n=15), proinsulin levels were consistently high: between 8 and 154 times the upper limit of normal (mean 74). Conclusion: We described a homozygous nonsense pathogenic variant (NM_000439.4) c. 595 C>T in exon 5 of PCSK1 in a boy with congenital proprotein convertase 1/3 deficiency. Elevated proinsulin could be useful in the diagnosis of this condition.

10.
Eur J Hum Genet ; 26(7): 996-1006, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29695756

RESUMO

High-throughput sequencing (HTS) of human genome coding regions allows the simultaneous screen of a large number of genes, significantly improving the diagnosis of non-syndromic intellectual disabilities (ID). HTS studies permit the redefinition of the phenotypical spectrum of known disease-causing genes, escaping the clinical inclusion bias of gene-by-gene Sanger sequencing. We studied a cohort of 903 patients with ID not reminiscent of a well-known syndrome, using an ID-targeted HTS of several hundred genes and found de novo heterozygous variants in TCF4 (transcription factor 4) in eight novel patients. Piecing together the patients from this study and those from previous large-scale unbiased HTS studies, we estimated the rate of individuals with ID carrying a disease-causing TCF4 mutation to 0.7%. So far, TCF4 molecular abnormalities were known to cause a syndromic form of ID, Pitt-Hopkins syndrome (PTHS), which combines severe ID, developmental delay, absence of speech, behavioral and ventilation disorders, and a distinctive facial gestalt. Therefore, we reevaluated ten patients carrying a pathogenic or likely pathogenic variant in TCF4 (eight patients included in this study and two from our previous ID-HTS study) for PTHS criteria defined by Whalen and Marangi. A posteriori, five patients had a score highly evocative of PTHS, three were possibly consistent with this diagnosis, and two had a score below the defined PTHS threshold. In conclusion, these results highlight TCF4 as a frequent cause of moderate to profound ID and broaden the clinical spectrum associated to TCF4 mutations to nonspecific ID.

11.
Hum Mutat ; 39(6): 790-805, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29637653

RESUMO

Simpson-Golabi-Behmel syndrome (SGBS) is an X-linked multiple congenital anomalies and overgrowth syndrome caused by a defect in the glypican-3 gene (GPC3). Until now, GPC3 mutations have been reported in isolated cases or small series and the global genotypic spectrum of these mutations has never been delineated. In this study, we review the 57 previously described GPC3 mutations and significantly expand this mutational spectrum with the description of 29 novel mutations. Compiling our data and those of the literature, we provide an overview of 86 distinct GPC3 mutations identified in 120 unrelated families, ranging from single nucleotide variations to complex genomic rearrangements and dispersed throughout the entire coding region of GPC3. The vast majority of them are deletions or truncating mutations (frameshift, nonsense mutations) predicted to result in a loss-of-function. Missense mutations are rare and the two which were functionally characterized, impaired GPC3 function by preventing GPC3 cleavage and cell surface addressing respectively. This report by describing for the first time the wide mutational spectrum of GPC3 could help clinicians and geneticists in interpreting GPC3 variants identified incidentally by high-throughput sequencing technologies and also reinforces the need for functional validation of non-truncating mutations (missense, in frame mutations, duplications).

12.
Eur J Med Genet ; 2018 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-29510240

RESUMO

Mutations in the oligophrenin 1 gene (OPHN1) have been identified in patients with X-linked intellectual disability (XLID) associated with cerebellar hypoplasia and ventriculomegaly, suggesting it could be a recognizable syndromic intellectual disability (ID). Affected individuals share additional clinical features including speech delay, seizures, strabismus, behavioral difficulties, and slight facial dysmorphism. OPHN1 is located in Xq12 and encodes a Rho-GTPase-activating protein involved in the regulation of the G-protein cycle. Rho protein members play an important role in dendritic growth and in plasticity of excitatory synapses. Here we report on 17 individuals from four unrelated families affected by mild to severe intellectual disability due to OPHN1 mutations without cerebellar anomaly on brain MRI. We describe clinical, genetic and neuroimaging data of affected patients. Among the identified OPHN1 mutations, we report for the first time a missense mutation occurring in a mosaic state. We discuss the intrafamilial clinical variability of the disease and compare our patients with those previously reported. We emphasize the power of next generation techniques (X-exome sequencing, whole-exome sequencing and targeted multi-gene panel) to expand the phenotypic and mutational spectrum of OPHN1-related ID.

15.
Am J Med Genet C Semin Med Genet ; 175(4): 417-430, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29178447

RESUMO

CHARGE syndrome (CS) is a genetic disorder whose first description included Coloboma, Heart disease, Atresia of choanae, Retarded growth and development, Genital hypoplasia, and Ear anomalies and deafness, most often caused by a genetic mutation in the CHD7 gene. Two features were then added: semicircular canal anomalies and arhinencephaly/olfactory bulb agenesis, with classification of typical, partial, or atypical forms on the basis of major and minor clinical criteria. The detection rate of a pathogenic variant in the CHD7 gene varies from 67% to 90%. To try to have an overview of this heterogenous clinical condition and specify a genotype-phenotype relation, we conducted a national study of phenotype and genotype in 119 patients with CS. Selected clinical diagnostic criteria were from Verloes (2005), updated by Blake & Prasad (). Besides obtaining a detailed clinical description, when possible, patients underwent a full ophthalmologic examination, audiometry, temporal bone CT scan, gonadotropin analysis, and olfactory-bulb MRI. All patients underwent CHD7 sequencing and MLPA analysis. We found a pathogenic CHD7 variant in 83% of typical CS cases and 58% of atypical cases. Pathogenic variants in the CHD7 gene were classified by the expected impact on the protein. In all, 90% of patients had a typical form of CS and 10% an atypical form. The most frequent features were deafness/semicircular canal hypoplasia (94%), pituitary defect/hypogonadism (89%), external ear anomalies (87%), square-shaped face (81%), and arhinencephaly/anosmia (80%). Coloboma (73%), heart defects (65%), and choanal atresia (43%) were less frequent.


Assuntos
Síndrome CHARGE/diagnóstico , Síndrome CHARGE/genética , Estudos de Associação Genética , Genótipo , Fenótipo , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Adolescente , Adulto , Alelos , Substituição de Aminoácidos , Sistema Nervoso Central/anormalidades , Criança , Pré-Escolar , Estudos de Coortes , Nervos Cranianos/anormalidades , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Feminino , França , Testes Genéticos , Humanos , Lactente , Masculino , Técnicas de Diagnóstico Molecular , Adulto Jovem
16.
Am J Hum Genet ; 101(5): 716-724, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100085

RESUMO

DHX30 is a member of the family of DExH-box helicases, which use ATP hydrolysis to unwind RNA secondary structures. Here we identified six different de novo missense mutations in DHX30 in twelve unrelated individuals affected by global developmental delay (GDD), intellectual disability (ID), severe speech impairment and gait abnormalities. While four mutations are recurrent, two are unique with one affecting the codon of one recurrent mutation. All amino acid changes are located within highly conserved helicase motifs and were found to either impair ATPase activity or RNA recognition in different in vitro assays. Moreover, protein variants exhibit an increased propensity to trigger stress granule (SG) formation resulting in global translation inhibition. Thus, our findings highlight the prominent role of translation control in development and function of the central nervous system and also provide molecular insight into how DHX30 dysfunction might cause a neurodevelopmental disorder.


Assuntos
Deficiências do Desenvolvimento/genética , Mutação de Sentido Incorreto/genética , RNA Helicases/genética , Adenosina Trifosfatases/genética , Adolescente , Aminoácidos/genética , Linhagem Celular , Linhagem Celular Tumoral , Sistema Nervoso Central/patologia , Criança , Pré-Escolar , Feminino , Células HEK293 , Humanos , Deficiência Intelectual/genética , Masculino , RNA/genética
17.
Blood ; 130(12): 1456-1467, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28679735

RESUMO

X-linked recessive ectodermal dysplasia with immunodeficiency is a rare primary immunodeficiency caused by hypomorphic mutations of the IKBKG gene encoding the nuclear factor κB essential modulator (NEMO) protein. This condition displays enormous allelic, immunological, and clinical heterogeneity, and therapeutic decisions are difficult because NEMO operates in both hematopoietic and nonhematopoietic cells. Hematopoietic stem cell transplantation (HSCT) is potentially life-saving, but the small number of case reports available suggests it has been reserved for only the most severe cases. Here, we report the health status before HSCT, transplantation outcome, and clinical follow-up for a series of 29 patients from unrelated kindreds from 11 countries. Between them, these patients carry 23 different hypomorphic IKBKG mutations. HSCT was performed from HLA-identical related donors (n = 7), HLA-matched unrelated donors (n = 12), HLA-mismatched unrelated donors (n = 8), and HLA-haploidentical related donors (n = 2). Engraftment was documented in 24 patients, and graft-versus-host disease in 13 patients. Up to 7 patients died 0.2 to 12 months after HSCT. The global survival rate after HSCT among NEMO-deficient children was 74% at a median follow-up after HSCT of 57 months (range, 4-108 months). Preexisting mycobacterial infection and colitis were associated with poor HSCT outcome. The underlying mutation does not appear to have any influence, as patients with the same mutation had different outcomes. Transplantation did not appear to cure colitis, possibly as a result of cell-intrinsic disorders of the epithelial barrier. Overall, HSCT can cure most clinical features of patients with a variety of IKBKG mutations.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Quinase I-kappa B/genética , Mutação/genética , Pré-Escolar , Estudos de Coortes , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Heterozigoto , Humanos , Lactente , Recém-Nascido , Inflamação/patologia , Doenças Inflamatórias Intestinais/etiologia , NF-kappa B/metabolismo , Fenótipo , Transdução de Sinais/genética , Análise de Sobrevida , Doadores de Tecidos , Condicionamento Pré-Transplante , Resultado do Tratamento
18.
Arterioscler Thromb Vasc Biol ; 37(6): 1087-1097, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28428218

RESUMO

OBJECTIVE: Dominant mutations of the X-linked filamin A (FLNA) gene are responsible for filaminopathies A, which are rare disorders including brain periventricular nodular heterotopia, congenital intestinal pseudo-obstruction, cardiac valves or skeleton malformations, and often macrothrombocytopenia. APPROACH AND RESULTS: We studied a male patient with periventricular nodular heterotopia and congenital intestinal pseudo-obstruction, his unique X-linked FLNA allele carrying a stop codon mutation resulting in a 100-amino acid-long FLNa C-terminal extension (NP_001447.2: p.Ter2648SerextTer101). Platelet counts were normal, with few enlarged platelets. FLNa was detectable in all platelets but at 30% of control levels. Surprisingly, all platelet functions were significantly upregulated, including platelet aggregation and secretion, as induced by ADP, collagen, or von Willebrand factor in the presence of ristocetin, as well as thrombus formation in blood flow on a collagen or on a von Willebrand factor matrix. Most importantly, patient platelets stimulated with ADP exhibited a marked increase in αIIbß3 integrin activation and a parallel increase in talin recruitment to ß3, contrasting with normal Rap1 activation. These results are consistent with the mutant FLNa affecting the last step of αIIbß3 activation. Overexpression of mutant FLNa in the HEL megakaryocytic cell line correlated with an increase (compared with wild-type FLNa) in PMA-induced fibrinogen binding to and in talin and kindlin-3 recruitment by αIIbß3. CONCLUSIONS: Altogether, our results are consistent with a less binding of mutant FLNa to ß3 and the facilitated recruitment of talin by ß3 on platelet stimulation, explaining the increased αIIbß3 activation and the ensuing gain-of-platelet functions.


Assuntos
Plaquetas/metabolismo , Filaminas/genética , Integrina alfa2/sangue , Integrina beta3/sangue , Pseudo-Obstrução Intestinal/genética , Mutação , Heterotopia Nodular Periventricular/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Adulto , Plaquetas/ultraestrutura , Linhagem Celular , Análise Mutacional de DNA , Filaminas/sangue , Predisposição Genética para Doença , Hereditariedade , Humanos , Pseudo-Obstrução Intestinal/sangue , Pseudo-Obstrução Intestinal/diagnóstico , Masculino , Heterotopia Nodular Periventricular/sangue , Heterotopia Nodular Periventricular/diagnóstico , Fenótipo , Ativação Plaquetária , Testes de Função Plaquetária , Ligação Proteica , Transdução de Sinais , Talina/sangue , Proteínas de Ligação a Telômeros/sangue , Transfecção , Fator de von Willebrand/metabolismo
19.
Am J Med Genet A ; 173(2): 479-486, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27623003

RESUMO

Focal dermal hypoplasia (FDH) is a rare syndrome characterized by pleiotropic features knowing to involve mostly skin and limbs. Although FDH has been described in children and adults, the cardinal signs of the fetal phenotype are not straightforward impacting the quality of the prenatal diagnosis. We describe in depth the ultrasound, radiological, macroscopical, and histological phenotype of three female fetuses with a severe form of FDH, propose a review of the literature and an attempt to delineate minimal and cardinal signs for FDH diagnosis. This report confirms the variability of FDH phenotype, highlights unreported FDH features, and allows delineating evocative clinical associations for prenatal diagnosis, namely intrauterine growth retardation, limbs malformations, anterior wall/diaphragm defects, and eye anomalies. © 2016 Wiley Periodicals, Inc.


Assuntos
Hipoplasia Dérmica Focal/diagnóstico , Hipoplasia Dérmica Focal/genética , Aborto Induzido , Aciltransferases/genética , Autopsia , Análise Mutacional de DNA , Feminino , Feto/anormalidades , Estudos de Associação Genética , Testes Genéticos , Genótipo , Humanos , Masculino , Proteínas de Membrana/genética , Mutação , Fenótipo , Diagnóstico Pré-Natal , Radiografia , Ultrassonografia Pré-Natal
20.
Orphanet J Rare Dis ; 11(1): 149, 2016 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-27816064

RESUMO

BACKGROUND: Schimke immuno-osseous dysplasia (SIOD) is a multisystemic disorder caused by biallelic mutations in the SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily A-like 1 (SMARCAL1) gene. Changes in gene expression underlie the arteriosclerosis and T-cell immunodeficiency of SIOD; therefore, we hypothesized that SMARCAL1 deficiency causes the focal segmental glomerulosclerosis (FSGS) of SIOD by altering renal gene expression. We tested this hypothesis by gene expression analysis of an SIOD patient kidney and verified these findings through immunofluorescent analysis in additional SIOD patients and a genetic interaction analysis in Drosophila. RESULTS: We found increased expression of components and targets of the Wnt and Notch signaling pathways in the SIOD patient kidney, increased levels of unphosphorylated ß-catenin and Notch1 intracellular domain in the glomeruli of most SIOD patient kidneys, and genetic interaction between the Drosophila SMARCAL1 homologue Marcal1 and genes of the Wnt and Notch signaling pathways. CONCLUSIONS: We conclude that increased Wnt and Notch activity result from SMARCAL1 deficiency and, as established causes of FSGS, contribute to the renal disease of most SIOD patients. This further clarifies the pathogenesis of SIOD and will hopefully direct potential therapeutic approaches for SIOD patients.


Assuntos
Arteriosclerose/metabolismo , Glomerulosclerose Segmentar e Focal/metabolismo , Síndromes de Imunodeficiência/metabolismo , Nefropatias/metabolismo , Síndrome Nefrótica/metabolismo , Osteocondrodisplasias/metabolismo , Embolia Pulmonar/metabolismo , Receptores Notch/metabolismo , Proteínas Wnt/metabolismo , Animais , Arteriosclerose/genética , Criança , Pré-Escolar , DNA Helicases/genética , DNA Helicases/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Glomerulosclerose Segmentar e Focal/genética , Humanos , Síndromes de Imunodeficiência/genética , Nefropatias/genética , Masculino , Síndrome Nefrótica/genética , Osteocondrodisplasias/genética , Embolia Pulmonar/genética , Proteínas Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA