Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nature ; 605(7909): 285-290, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35477765

RESUMO

Comprehensive assessments of species' extinction risks have documented the extinction crisis1 and underpinned strategies for reducing those risks2. Global assessments reveal that, among tetrapods, 40.7% of amphibians, 25.4% of mammals and 13.6% of birds are threatened with extinction3. Because global assessments have been lacking, reptiles have been omitted from conservation-prioritization analyses that encompass other tetrapods4-7. Reptiles are unusually diverse in arid regions, suggesting that they may have different conservation needs6. Here we provide a comprehensive extinction-risk assessment of reptiles and show that at least 1,829 out of 10,196 species (21.1%) are threatened-confirming a previous extrapolation8 and representing 15.6 billion years of phylogenetic diversity. Reptiles are threatened by the same major factors that threaten other tetrapods-agriculture, logging, urban development and invasive species-although the threat posed by climate change remains uncertain. Reptiles inhabiting forests, where these threats are strongest, are more threatened than those in arid habitats, contrary to our prediction. Birds, mammals and amphibians are unexpectedly good surrogates for the conservation of reptiles, although threatened reptiles with the smallest ranges tend to be isolated from other threatened tetrapods. Although some reptiles-including most species of crocodiles and turtles-require urgent, targeted action to prevent extinctions, efforts to protect other tetrapods, such as habitat preservation and control of trade and invasive species, will probably also benefit many reptiles.

2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35058358

RESUMO

Rates of species formation vary widely across the tree of life and contribute to massive disparities in species richness among clades. This variation can emerge from differences in metapopulation-level processes that affect the rates at which lineages diverge, persist, and evolve reproductive barriers and ecological differentiation. For example, populations that evolve reproductive barriers quickly should form new species at faster rates than populations that acquire reproductive barriers more slowly. This expectation implicitly links microevolutionary processes (the evolution of populations) and macroevolutionary patterns (the profound disparity in speciation rate across taxa). Here, leveraging extensive field sampling from the Neotropical Cerrado biome in a biogeographically controlled natural experiment, we test the role of an important microevolutionary process-the propensity for population isolation-as a control on speciation rate in lizards and snakes. By quantifying population genomic structure across a set of codistributed taxa with extensive and phylogenetically independent variation in speciation rate, we show that broad-scale patterns of species formation are decoupled from demographic and genetic processes that promote the formation of population isolates. Population isolation is likely a critical stage of speciation for many taxa, but our results suggest that interspecific variability in the propensity for isolation has little influence on speciation rates. These results suggest that other stages of speciation-including the rate at which reproductive barriers evolve and the extent to which newly formed populations persist-are likely to play a larger role than population isolation in controlling speciation rate variation in squamates.


Assuntos
Evolução Biológica , Especiação Genética , Isolamento Reprodutivo , Répteis/genética , Animais , Biodiversidade , Evolução Molecular , Genética Populacional , Lagartos/classificação , Lagartos/genética , Filogenia , Filogeografia , Répteis/classificação , Serpentes/classificação , Serpentes/genética
3.
Mol Ecol ; 31(1): 331-342, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614269

RESUMO

Phylogeography investigates historical drivers of the geographical distribution of intraspecific lineages. Particular attention has been given to ecological, climatic and geological processes in the diversification of the Neotropical biota. Several species sampled across the South American diagonal of open formations (DOF), comprising the Caatinga, Cerrado and Chaco biomes, experienced range shifts coincident with Quaternary climatic changes. However, comparative studies across different spatial, temporal and biological scales on DOF species are still meagre. Here, we combine phylogeographical model selection and machine learning predictive frameworks to investigate the influence of Pleistocene climatic changes on several plant and animal species from the DOF. We assembled mitochondrial/chloroplastic DNA sequences in public repositories and inferred the demographic responses of 44 species, comprising 70 intraspecific lineages of plants, lizards, frogs, spiders and insects. We then built a random forest model using biotic and abiotic information to identify the best predictors of demographic responses in the Pleistocene. Finally, we assessed the temporal synchrony of species demographic responses with hierarchical approximate Bayesian computation. Biotic variables related to population connectivity, gene flow and habitat preferences largely predicted how species responded to Pleistocene climatic changes, and demographic changes were synchronous primarily during the Middle Pleistocene. Although 22 (~31%) lineages underwent demographic expansion, presumably associated with the spread of aridity during the glacial Pleistocene periods, our findings suggest that nine lineages (~13%) exhibited the opposite response due to taxon-specific attributes.


Assuntos
Lagartos , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Demografia , Variação Genética , Lagartos/genética , Filogenia , Filogeografia , América do Sul
4.
Evolution ; 76(2): 346-356, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34878663

RESUMO

Sex-related differences in mortality are widespread in the animal kingdom. Although studies have shown that sex determination systems might drive lifespan evolution, sex chromosome influence on aging rates have not been investigated so far, likely due to an apparent lack of demographic data from clades including both XY (with heterogametic males) and ZW (heterogametic females) systems. Taking advantage of a unique collection of capture-recapture datasets in amphibians, a vertebrate group where XY and ZW systems have repeatedly evolved over the past 200 million years, we examined whether sex heterogamy can predict sex differences in aging rates and lifespans. We showed that the strength and direction of sex differences in aging rates (and not lifespan) differ between XY and ZW systems. Sex-specific variation in aging rates was moderate within each system, but aging rates tended to be consistently higher in the heterogametic sex. This led to small but detectable effects of sex chromosome system on sex differences in aging rates in our models. Although preliminary, our results suggest that exposed recessive deleterious mutations on the X/Z chromosome (the "unguarded X/Z effect") or repeat-rich Y/W chromosome (the "toxic Y/W effect") could accelerate aging in the heterogametic sex in some vertebrate clades.


Assuntos
Caracteres Sexuais , Cromossomos Sexuais , Envelhecimento/genética , Anfíbios/genética , Animais , Feminino , Masculino , Processos de Determinação Sexual , Cromossomo Y
5.
J Fish Biol ; 99(3): 905-920, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33959963

RESUMO

This study describes two new endemic Hypostomus species from central Brazil, which were previously identified as genetically distinct lineages in a recent genomic study that recommended their testing and potential description based on morphological data. A machine learning classification procedure (random forest) was used to investigate morphological variation and identify putatively diagnostic characters for these candidate species and revealed that each is morphologically distinct. The new species Hypostomus cafuringa is characterized by small size, dark spots under a light background, deeper caudal peduncle and shorter first ray of the pectoral fin and base of the dorsal fin when compared to congeneric species from the region. H. cafuringa is known from the headwaters of the Maranhão River, upper Tocantins River basin, Distrito Federal, Brazil. The second new species, Hypostomus crulsi, is characterized by dark spots under a light background, absence of plates along the abdomen region, shorter first ray of the pelvic fin, shorter first ray of the pectoral fin and smaller body size. H. crulsi is known from the headwaters of the São Bartolomeu River, upper Paraná River basin, Distrito Federal, Brazil. The rapid conversion of natural habitats for agricultural development and the isolation of protected areas represent a serious threat to the continued existence of these two newly described endemic species, which warrant conservation assessment.


Assuntos
Peixes-Gato , Animais , Tamanho Corporal , Brasil , Peixes-Gato/genética , Ecossistema , Rios
6.
Mol Ecol Resour ; 21(8): 2661-2675, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33973350

RESUMO

The discipline of phylogeography has evolved rapidly in terms of the analytical toolkit used to analyse large genomic data sets. Despite substantial advances, analytical tools that could potentially address the challenges posed by increased model complexity have not been fully explored. For example, deep learning techniques are underutilized for phylogeographic model selection. In non-model organisms, the lack of information about their ecology and evolution can lead to uncertainty about which demographic models are appropriate. Here, we assess the utility of convolutional neural networks (CNNs) for assessing demographic models in South American lizards in the genus Norops. Three demographic scenarios (constant, expansion, and bottleneck) were considered for each of four inferred population-level lineages, and we found that the overall model accuracy was higher than 98% for all lineages. We then evaluated a set of 26 models that accounted for evolutionary relationships, gene flow, and changes in effective population size among the four lineages, identifying a single model with an estimated overall accuracy of 87% when using CNNs. The inferred demography of the lizard system suggests that gene flow between non-sister populations and changes in effective population sizes through time, probably in response to Pleistocene climatic oscillations, have shaped genetic diversity in this system. Approximate Bayesian computation (ABC) was applied to provide a comparison to the performance of CNNs. ABC was unable to identify a single model among the larger set of 26 models in the subsequent analysis. Our results demonstrate that CNNs can be easily and usefully incorporated into the phylogeographer's toolkit.


Assuntos
Lagartos , Animais , Teorema de Bayes , Genômica , Lagartos/genética , Redes Neurais de Computação , Filogeografia
7.
Syst Biol ; 70(3): 542-557, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32681800

RESUMO

Genome-scale data have the potential to clarify phylogenetic relationships across the tree of life but have also revealed extensive gene tree conflict. This seeming paradox, whereby larger data sets both increase statistical confidence and uncover significant discordance, suggests that understanding sources of conflict is important for accurate reconstruction of evolutionary history. We explore this paradox in squamate reptiles, the vertebrate clade comprising lizards, snakes, and amphisbaenians. We collected an average of 5103 loci for 91 species of squamates that span higher-level diversity within the clade, which we augmented with publicly available sequences for an additional 17 taxa. Using a locus-by-locus approach, we evaluated support for alternative topologies at 17 contentious nodes in the phylogeny. We identified shared properties of conflicting loci, finding that rate and compositional heterogeneity drives discordance between gene trees and species tree and that conflicting loci rarely overlap across contentious nodes. Finally, by comparing our tests of nodal conflict to previous phylogenomic studies, we confidently resolve 9 of the 17 problematic nodes. We suggest this locus-by-locus and node-by-node approach can build consensus on which topological resolutions remain uncertain in phylogenomic studies of other contentious groups. [Anchored hybrid enrichment (AHE); gene tree conflict; molecular evolution; phylogenomic concordance; target capture; ultraconserved elements (UCE).].


Assuntos
Lagartos , Serpentes , Animais , Evolução Biológica , Genoma/genética , Lagartos/genética , Filogenia , Serpentes/genética
8.
Evolution ; 74(9): 1988-2004, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32307697

RESUMO

Traditionally focused on Amazonian and Atlantic rainforests, studies on the origins of high Neotropical biodiversity have recently shifted to also investigate biodiversity processes in the South American dry diagonal, encompassing Chaco, Cerrado savannas, and Caatinga seasonally dry tropical forests. The plateau/depression hypothesis states that riparian forests in the Brazilian Shield in central Brazil are inhabited by Pleistocene lineages, with shallow divergences and signatures of population expansion. Moreover, riparian forests may have acted as a vegetation network in the Pleistocene, allowing gene/species flow across the South American dry diagonal. We tested these hypotheses using Colobosaura modesta, a small gymnophthalmid lizard from forested habitats in the Cerrado savannas and montane/submontane forests in the Caatinga. We conducted phylogeographic analyses using a multi-locus dataset, tested alternative demographic scenarios with Approximate Bayesian Computation, and also employed species delimitation tests. We recovered a history of recent colonization and expansion along riparian forests, associated with Pleistocene climate shifts, and the existence of a new species of Colobosaura restricted to the Serra do Cachimbo region. We also present evidence that riparian forests have provided an interconnected network for forest organisms within the South American dry diagonal and that Pleistocene events played an important role in their evolutionary history.


Assuntos
Distribuição Animal , Florestas , Lagartos , Animais , Evolução Biológica , Brasil , Filogeografia , Clima Tropical
9.
Ecol Evol ; 10(5): 2608-2625, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32185006

RESUMO

Ecological requirements and environmental conditions can influence diversification across temporal and spatial scales. Understanding the role of ecological niche evolution under phylogenetic contexts provides insights on speciation mechanisms and possible responses to future climatic change. Large-scale phyloclimatic studies on the megadiverse Neotropics, where biomes with contrasting vegetation types occur in narrow contact, are rare. We integrate ecological and biogeographic data with phylogenetic comparative methods, to investigate the relative roles of biogeographic events and niche divergence and conservatism on the diversification of the lizard genus Kentropyx Spix, 1825 (Squamata: Teiidae), distributed in South American rainforests and savannas. Using five molecular markers, we estimated a dated species tree, which recovered three clades coincident with previously proposed species groups diverging during the mid-Miocene. Biogeography reconstruction indicates a role of successive dispersal events from an ancestral range in the Brazilian Shield and western Amazonia. Ancestral reconstruction of climatic tolerances and niche overlap metrics indicates a trend of conservatism during the diversification of groups from the Amazon Basin and Guiana Shield, and a strong signal of niche divergence in the Brazilian Shield savannas. Our results suggest that climatic-driven divergence at dynamic forest-savanna borders might have resulted in adaptation to new environmental niches, promoting habitat shifts and shaping speciation patterns of Neotropical lizards. Dispersal and ecological divergence could have a more important role in Neotropical diversification than previously thought.

10.
J Fish Biol ; 95(4): 1046-1060, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31304599

RESUMO

The extraordinary species diversity of the Neotropical freshwater fish fauna is world renown. Yet, despite rich species diversity, taxonomic and genetic resources for its Cerrado ichthyofauna remain poorly developed. We provide a reference library of 149 DNA barcodes for 39 species/lineages of Cerrado headwater stream fishes from the Brazilian Distrito Federal and nearby areas and test the utility of distance-based criteria, tree-based criteria and minibarcodes for specimen identification. Mean Kimura 2-parameter genetic distances within species to orders ranged 1·8-12·1%. However, mean intraspecific v. congeneric-interspecific distances (0·9-1·3%) overlapped extensively and distance-based barcoding failed to achieve correct identifications due to c. 4-12·1% error rates and 19·5% ambiguous identifications related to the presence of singletons. Overlap was reduced and best-match success rates improved drastically to 83·5% when Characidium barcodes representing potential misidentifications or undescribed species were removed. Tree-based monophyly criteria generally performed similarly to distance methods, correctly differentiating up to c. 85% of species/lineages despite neighbour-joining and Bayesian tree errors (random lineage-branching events, long-branch attraction). Five clusters (Ancistrus aguaboensis, Characidium spp., Eigenmannia trilineata, Hasemania hanseni and Hypostomus sp. 2) exhibited deep intraspecific divergences or para-/polyphyly and multiple Barcode Index Number assignments indicative of putative candidate species needing taxonomic re-examination. Sliding-window analyses also indicated that a 200 bp minibarcode region performed just as well at specimen identification as the entire barcode gene. Future DNA barcoding studies of Distrito Federal-Cerrado freshwater fishes will benefit from increased sampling coverage, as well as consideration of minibarcode targets for degraded samples and next-generation sequencing.


Assuntos
Distribuição Animal , Código de Barras de DNA Taxonômico , Peixes/genética , Animais , Teorema de Bayes , Biodiversidade , Brasil , Complexo IV da Cadeia de Transporte de Elétrons/genética , Peixes/fisiologia , Biblioteca Gênica , Filogenia , Rios , Especificidade da Espécie
11.
Mol Ecol ; 28(7): 1748-1764, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30742734

RESUMO

Although the impact of Pleistocene glacial cycles on the diversification of the tropical biota was once dismissed, increasing evidence suggests that Pleistocene climatic fluctuations greatly affected the distribution and population divergence of tropical organisms. Landscape genomic analyses coupled with paleoclimatic distribution models provide a powerful way to understand the consequences of past climate changes on the present-day tropical biota. Using genome-wide SNP data and mitochondrial DNA, combined with projections of the species distribution across the late Quaternary until the present, we evaluate the effect of paleoclimatic shifts on the genetic structure and population differentiation of Hypsiboas lundii, a treefrog endemic to the South American Cerrado savanna. Our results show a recent and strong genetic divergence in H. lundii across the Cerrado landscape, yielding four genetic clusters that do not seem congruent with any current physical barrier to gene flow. Isolation by distance (IBD) explains some of the population differentiation, but we also find strong support for past climate changes promoting range shifts and structuring populations even in the presence of IBD. Post-Pleistocene population persistence in four main areas of historical stable climate in the Cerrado seems to have played a major role establishing the present genetic structure of this treefrog. This pattern is consistent with a model of reduced gene flow in areas with high climatic instability promoting isolation of populations, defined here as "isolation by instability," highlighting the effects of Pleistocene climatic fluctuations structuring populations in tropical savannas.


Assuntos
Anuros/genética , Mudança Climática , Genética Populacional , Pradaria , Animais , Brasil , DNA Mitocondrial/genética , Fluxo Gênico , Modelos Genéticos , Filogeografia , Polimorfismo de Nucleotídeo Único , Isolamento Reprodutivo , Clima Tropical
12.
Mol Phylogenet Evol ; 133: 54-66, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30590108

RESUMO

Amazonia harbors the greatest biological diversity on Earth. One trend that spans Amazonian taxa is that most taxonomic groups either exhibit broad geographic ranges or small restricted ranges. This is likely because many traits that determine a species range size, such as dispersal ability or body size, are autocorrelated. As such, it is rare to find groups that exhibit both large and small ranges. Once identified, however, these groups provide a powerful system for isolating specific traits that influence species distributions. One group of terrestrial vertebrates, gecko lizards, tends to exhibit small geographic ranges. Despite one exception, this applies to the Neotropical dwarf geckos of the genus Gonatodes. This exception, Gonatodes humeralis, has a geographic distribution almost 1,000,000 km2 larger than the combined ranges of its 30 congeners. As the smallest member of its genus and a gecko lizard more generally, G. humeralis is an unlikely candidate to be a wide-ranged Amazonian taxon. To test whether or not G. humeralis is one or more species, we generated molecular genetic data using restriction-site associated sequencing (RADseq) and traditional Sanger methods for samples from across its range and conducted a phylogeographic study. We conclude that G. humeralis is, in fact, a single species across its contiguous range in South America. Thus, Gonatodes is a unique clade among Neotropical taxa, containing both wide-ranged and range-restricted taxa, which provides empiricists with a powerful model system to correlate complex species traits and distributions. Additionally, we provide evidence to support species-level divergence of the allopatric population from Trinidad and we resurrect the name Gonatodes ferrugineus from synonymy for this population.


Assuntos
Lagartos/classificação , Animais , Genética Populacional , Lagartos/genética , Filogenia , Filogeografia , América do Sul
13.
South Am J Herpetol, v. 14, sp1, p. 1-274, dez. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2928

RESUMO

Accurate and detailed species distribution maps are fundamental for documenting and interpreting biological diversity. For snakes, an ecologically diverse group of reptiles, syntheses and detailed data on distribution patterns remain scarce. We present the first comprehensive collection of detailed, voucher-based, point-locality, range maps for all described and documented Brazilian snakes, with the major aim of mitigating the Wallacean shortfall and as a contribution towards a better understanding of this rich, threatened, and poorly studied megadiverse fauna. We recorded a total of 412 snake species in Brazil on the basis of an extensive and verified point-locality database of 163,498 entries and 75,681 unique records (available here as Online Supporting Information). Our results reveal previously undocumented patterns of distribution, sampling effort, richness, and endemism levels, resulting in a more objective view of snake diversity in the Neotropics. Apart from these achievements, we understand that the most relevant and enduring contribution of the present atlas is to stimulate researchers to publish corrections, additions, and new discoveries.

14.
South Am. J. Herpetol. ; 14(sp1): 1-274, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17416

RESUMO

Accurate and detailed species distribution maps are fundamental for documenting and interpreting biological diversity. For snakes, an ecologically diverse group of reptiles, syntheses and detailed data on distribution patterns remain scarce. We present the first comprehensive collection of detailed, voucher-based, point-locality, range maps for all described and documented Brazilian snakes, with the major aim of mitigating the Wallacean shortfall and as a contribution towards a better understanding of this rich, threatened, and poorly studied megadiverse fauna. We recorded a total of 412 snake species in Brazil on the basis of an extensive and verified point-locality database of 163,498 entries and 75,681 unique records (available here as Online Supporting Information). Our results reveal previously undocumented patterns of distribution, sampling effort, richness, and endemism levels, resulting in a more objective view of snake diversity in the Neotropics. Apart from these achievements, we understand that the most relevant and enduring contribution of the present atlas is to stimulate researchers to publish corrections, additions, and new discoveries.

15.
Ecol Evol ; 8(15): 7490-7499, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30151165

RESUMO

Mimicry, the resemblance of one species by another, is a complex phenomenon where the mimic (Batesian mimicry) or the model and the mimic (Mullerian mimicry) gain an advantage from this phenotypic convergence. Despite the expectation that mimics should closely resemble their models, many mimetic species appear to be poor mimics. This is particularly apparent in some systems in which there are multiple available models. However, the influence of model pattern diversity on the evolution of mimetic systems remains poorly understood. We tested whether the number of model patterns a predator learns to associate with a negative consequence affects their willingness to try imperfect, novel patterns. We exposed week-old chickens to coral snake (Micrurus) color patterns representative of three South American areas that differ in model pattern richness, and then tested their response to the putative imperfect mimetic pattern of a widespread species of harmless colubrid snake (Oxyrhopus rhombifer) in different social contexts. Our results indicate that chicks have a great hesitation to attack when individually exposed to high model pattern diversity and a greater hesitation to attack when exposed as a group to low model pattern diversity. Individuals with a fast growth trajectory (measured by morphological traits) were also less reluctant to attack. We suggest that the evolution of new patterns could be favored by social learning in areas of low pattern diversity, while individual learning can reduce predation pressure on recently evolved mimics in areas of high model diversity. Our results could aid the development of ecological predictions about the evolution of imperfect mimicry and mimicry in general.

16.
Mol Phylogenet Evol ; 127: 638-645, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29906606

RESUMO

The Pleistocenic Arc Hypothesis (PAH) posits that South American Seasonally Dry Tropical Forests (SDTF) were interconnected during Pleistocene glacial periods, enabling the expansion of species ranges that were subsequently fragmented in interglacial periods, promoting speciation. The lizard genus Lygodactylus occurs in Africa, Madagascar, and South America. Compared to the high diversity of African Lygodactylus, only two species are known to occur in South America, L. klugei and L. wetzeli, distributed in SDTFs and the Chaco, respectively. We use a phylogenetic approach based on mitochondrial (ND2) and nuclear (RAG-1) markers covering the known range of South American Lygodactylus to investigate (i) if they are monophyletic relative to their African congeners, (ii) if their divergence is congruent with the fragmentation of the PAH, and (iii) if cryptic diversity exists within currently recognized species. Maximum likelihood and Bayesian phylogenetic analyses recovered a well-supported monophyletic South American Lygodactylus, presumably resulting from a single trans-Atlantic dispersal event 29 Mya. Species delimitation analyses supported the existence of five putative species, three of them undescribed. Divergence times among L. klugei and the three putative undescribed species, all endemic to the SDTFs, are not congruent with the fragmentation of the PAH. However, fragmentation of the once broader and continuous SDTFs likely influenced the divergence of L. wetzeli in the Chaco and Lygodactylus sp. 3 (in a SDTF enclave in the Cerrado).


Assuntos
Evolução Biológica , Lagartos/classificação , Animais , Teorema de Bayes , Variação Genética , Geografia , Funções Verossimilhança , Lagartos/genética , Filogenia , América do Sul , Especificidade da Espécie , Fatores de Tempo
17.
An Acad Bras Cienc ; 90(2): 1279-1284, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29898095
19.
J Therm Biol ; 73: 50-60, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29549991

RESUMO

Temperature increases can impact biodiversity and predicting their effects is one of the main challenges facing global climate-change research. Ectotherms are sensitive to temperature change and, although predictions indicate that tropical species are highly vulnerable to global warming, they remain one of the least studied groups with respect to the extent of physiological variation and local extinction risks. We model the extinction risks for a tropical heliothermic teiid lizard (Kentropyx calcarata) integrating previously obtained information on intraspecific phylogeographic structure, eco-physiological traits and contemporary species distributions in the Amazon rainforest and its ecotone to the Cerrado savannah. We also investigated how thermal-biology traits vary throughout the species' geographic range and the consequences of such variation for lineage vulnerability. We show substantial variation in thermal tolerance of individuals among thermally distinct sites. Thermal critical limits were highly correlated with operative environmental temperatures. Our physiological/climatic model predicted relative extinction risks for local populations within clades of K. calcarata for 2050 ranging between 26.1% and 70.8%, while for 2070, extinction risks ranged from 52.8% to 92.8%. Our results support the hypothesis that tropical-lizard taxa are at high risk of local extinction caused by increasing temperatures. However, the thermo-physiological differences found across the species' distribution suggest that local adaptation may allow persistence of this tropical ectotherm in global warming scenarios. These results will serve as basis to further research to investigate the strength of local adaptation to climate change. Persistence of Kentropyx calcarata also depends on forest preservation, but the Amazon rainforest is currently under high deforestation rates. We argue that higher conservation priority is necessary so the Amazon rainforest can fulfill its capacity to absorb the impacts of temperature increase on tropical ectotherms during climate change.


Assuntos
Aclimatação , Temperatura Corporal , Extinção Biológica , Aquecimento Global , Lagartos/fisiologia , Animais , Feminino , Locomoção , Masculino , Modelos Biológicos , Floresta Úmida , Fatores de Risco , Temperatura , Clima Tropical
20.
PLoS One ; 13(3): e0192834, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29513695

RESUMO

We summarize thermal-biology data of 69 species of Amazonian lizards, including mode of thermoregulation and field-active body temperatures (Tb). We also provide new data on preferred temperatures (Tpref), voluntary and thermal-tolerance ranges, and thermal-performance curves (TPC's) for 27 species from nine sites in the Brazilian Amazonia. We tested for phylogenetic signal and pairwise correlations among thermal traits. We found that species generally categorized as thermoregulators have the highest mean values for all thermal traits, and broader ranges for Tb, critical thermal maximum (CTmax) and optimal (Topt) temperatures. Species generally categorized as thermoconformers have large ranges for Tpref, critical thermal minimum (CTmin), and minimum voluntary (VTmin) temperatures for performance. Despite these differences, our results show that all thermal characteristics overlap between both groups and suggest that Amazonian lizards do not fit into discrete thermoregulatory categories. The traits are all correlated, with the exceptions of (1) Topt, which does not correlate with CTmax, and (2) CTmin, and correlates only with Topt. Weak phylogenetic signals for Tb, Tpref and VTmin indicate that these characters may be shaped by local environmental conditions and influenced by phylogeny. We found that open-habitat species perform well under present environmental conditions, without experiencing detectable thermal stress from high environmental temperatures induced in lab experiments. For forest-dwelling lizards, we expect warming trends in Amazonia to induce thermal stress, as temperatures surpass the thermal tolerances for these species.


Assuntos
Aclimatação/fisiologia , Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Lagartos/fisiologia , Temperatura , Animais , Brasil , Ecossistema , Geografia , Lagartos/classificação , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...