Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Transl Psychiatry ; 9(1): 242, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31582733

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder caused by an interplay of genetic and environmental factors. Epigenetics is crucial to lasting changes in gene expression in the brain. Recent studies suggest a role for DNA methylation in ADHD. We explored the contribution to ADHD of allele-specific methylation (ASM), an epigenetic mechanism that involves SNPs correlating with differential levels of DNA methylation at CpG sites. We selected 3896 tagSNPs reported to influence methylation in human brain regions and performed a case-control association study using the summary statistics from the largest GWAS meta-analysis of ADHD, comprising 20,183 cases and 35,191 controls. We observed that genetic risk variants for ADHD are enriched in ASM SNPs and identified associations with eight tagSNPs that were significant at a 5% false discovery rate (FDR). These SNPs correlated with methylation of CpG sites lying in the promoter regions of six genes. Since methylation may affect gene expression, we inspected these ASM SNPs together with 52 ASM SNPs in high LD with them for eQTLs in brain tissues and observed that the expression of three of those genes was affected by them. ADHD risk alleles correlated with increased expression (and decreased methylation) of ARTN and PIDD1 and with a decreased expression (and increased methylation) of C2orf82. Furthermore, these three genes were predicted to have altered expression in ADHD, and genetic variants in C2orf82 correlated with brain volumes. In summary, we followed a systematic approach to identify risk variants for ADHD that correlated with differential cis-methylation, identifying three novel genes contributing to the disorder.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31212010

RESUMO

Cocaine dependence is a complex psychiatric disorder that is highly comorbid with other psychiatric traits. Twin and adoption studies suggest that genetic variants contribute substantially to cocaine dependence susceptibility, which has an estimated heritability of 65-79%. Here we performed a meta-analysis of genome-wide association studies of cocaine dependence using four datasets from the dbGaP repository (2085 cases and 4293 controls, all of them selected by their European ancestry). Although no genome-wide significant hits were found in the SNP-based analysis, the gene-based analysis identified HIST1H2BD as associated with cocaine-dependence (10% FDR). This gene is located in a region on chromosome 6 enriched in histone-related genes, previously associated with schizophrenia (SCZ). Furthermore, we performed LD Score regression analysis with comorbid conditions and found significant genetic correlations between cocaine dependence and SCZ, ADHD, major depressive disorder (MDD) and risk taking. We also found, through polygenic risk score analysis, that all tested phenotypes are significantly associated with cocaine dependence status: SCZ (R2 = 2.28%; P = 1.21e-26), ADHD (R2 = 1.39%; P = 4.5e-17), risk taking (R2 = 0.60%; P = 2.7e-08), MDD (R2 = 1.21%; P = 4.35e-15), children's aggressive behavior (R2 = 0.3%; P = 8.8e-05) and antisocial behavior (R2 = 1.33%; P = 2.2e-16). To our knowledge, this is the largest reported cocaine dependence GWAS meta-analysis in European-ancestry individuals. We identified suggestive associations in regions that may be related to cocaine dependence and found evidence for shared genetic risk factors between cocaine dependence and several comorbid psychiatric traits. However, the sample size is limited and further studies are needed to confirm these results.

3.
J Psychiatry Neurosci ; 44(5): 350-359, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31094488

RESUMO

Background: Previous research has implicated de novo and inherited truncating mutations in autism-spectrum disorder. We aim to investigate whether the load of inherited truncating mutations contributes similarly to high-functioning autism, and to characterize genes that harbour de novo variants in high-functioning autism. Methods: We performed whole-exome sequencing in 20 high-functioning autism families (average IQ = 100). Results: We observed no difference in the number of transmitted versus nontransmitted truncating alleles for high-functioning autism (117 v. 130, p = 0.78). Transmitted truncating and de novo variants in high-functioning autism were not enriched in gene ontology (GO) or Kyoto Encyclopedia of Genes and Genomes (KEGG) categories, or in autism-related gene sets. However, in a patient with high-functioning autism we identified a de novo variant in a canonical splice site of LRP1, a postsynaptic density gene that is a target for fragile X mental retardation protein (FRMP). This de novo variant leads to in-frame skipping of exon 29, removing 2 of 6 blades of the ß-propeller domain 4 of LRP1, with putative functional consequences. Large data sets implicate LRP1 across a number of psychiatric disorders: de novo variants are associated with autism-spectrum disorder (p = 0.039) and schizophrenia (p = 0.008) from combined sequencing projects; common variants using genome-wide association study data sets from the Psychiatric Genomics Consortium show gene-based association in schizophrenia (p = 6.6 × E−07) and in a meta-analysis across 7 psychiatric disorders (p = 2.3 × E−03); and the burden of ultra-rare pathogenic variants has been shown to be higher in autism-spectrum disorder (p = 1.2 × E−05), using whole-exome sequencing from 6135 patients with schizophrenia, 1778 patients with autism-spectrum disorder and 7875 controls. Limitations: We had a limited sample of patients with high-functioning autism, related to difficulty in recruiting probands with high cognitive performance and no family history of psychiatric disorders. Conclusion: Previous studies and ours suggest an effect of truncating mutations restricted to severe autism-spectrum disorder phenotypes that are associated with intellectual disability. We provide evidence for pleiotropic effects of common and rare variants in the LRP1 gene across psychiatric phenotypes.

4.
Transl Psychiatry ; 9(1): 42, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696812

RESUMO

Genetic factors are strongly implicated in the susceptibility to develop externalizing syndromes such as attention-deficit/hyperactivity disorder (ADHD), oppositional defiant disorder, conduct disorder, and substance use disorder (SUD). Variants in the ADGRL3 (LPHN3) gene predispose to ADHD and predict ADHD severity, disruptive behaviors comorbidity, long-term outcome, and response to treatment. In this study, we investigated whether variants within ADGRL3 are associated with SUD, a disorder that is frequently co-morbid with ADHD. Using family-based, case-control, and longitudinal samples from disparate regions of the world (n = 2698), recruited either for clinical, genetic epidemiological or pharmacogenomic studies of ADHD, we assembled recursive-partitioning frameworks (classification tree analyses) with clinical, demographic, and ADGRL3 genetic information to predict SUD susceptibility. Our results indicate that SUD can be efficiently and robustly predicted in ADHD participants. The genetic models used remained highly efficient in predicting SUD in a large sample of individuals with severe SUD from a psychiatric institution that were not ascertained on the basis of ADHD diagnosis, thus identifying ADGRL3 as a risk gene for SUD. Recursive-partitioning analyses revealed that rs4860437 was the predominant predictive variant. This new methodological approach offers novel insights into higher order predictive interactions and offers a unique opportunity for translational application in the clinical assessment of patients at high risk for SUD.


Assuntos
Predisposição Genética para Doença , Receptores Acoplados a Proteínas-G/genética , Receptores de Peptídeos/genética , Transtornos Relacionados ao Uso de Substâncias/genética , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Estudos Longitudinais , Masculino , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Adulto Jovem
5.
Nat Genet ; 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478444

RESUMO

Attention deficit/hyperactivity disorder (ADHD) is a highly heritable childhood behavioral disorder affecting 5% of children and 2.5% of adults. Common genetic variants contribute substantially to ADHD susceptibility, but no variants have been robustly associated with ADHD. We report a genome-wide association meta-analysis of 20,183 individuals diagnosed with ADHD and 35,191 controls that identifies variants surpassing genome-wide significance in 12 independent loci, finding important new information about the underlying biology of ADHD. Associations are enriched in evolutionarily constrained genomic regions and loss-of-function intolerant genes and around brain-expressed regulatory marks. Analyses of three replication studies: a cohort of individuals diagnosed with ADHD, a self-reported ADHD sample and a meta-analysis of quantitative measures of ADHD symptoms in the population, support these findings while highlighting study-specific differences on genetic overlap with educational attainment. Strong concordance with GWAS of quantitative population measures of ADHD symptoms supports that clinical diagnosis of ADHD is an extreme expression of continuous heritable traits.

6.
Eur Neuropsychopharmacol ; 28(10): 1059-1088, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30195575

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is highly heritable and the most common neurodevelopmental disorder in childhood. In recent decades, it has been appreciated that in a substantial number of cases the disorder does not remit in puberty, but persists into adulthood. Both in childhood and adulthood, ADHD is characterised by substantial comorbidity including substance use, depression, anxiety, and accidents. However, course and symptoms of the disorder and the comorbidities may fluctuate and change over time, and even age of onset in childhood has recently been questioned. Available evidence to date is poor and largely inconsistent with regard to the predictors of persistence versus remittance. Likewise, the development of comorbid disorders cannot be foreseen early on, hampering preventive measures. These facts call for a lifespan perspective on ADHD from childhood to old age. In this selective review, we summarise current knowledge of the long-term course of ADHD, with an emphasis on clinical symptom and cognitive trajectories, treatment effects over the lifespan, and the development of comorbidities. Also, we summarise current knowledge and important unresolved issues on biological factors underlying different ADHD trajectories. We conclude that a severe lack of knowledge on lifespan aspects in ADHD still exists for nearly every aspect reviewed. We encourage large-scale research efforts to overcome those knowledge gaps through appropriately granular longitudinal studies.

7.
Transl Psychiatry ; 8(1): 173, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30166527

RESUMO

Cocaine is one of the most used psychostimulant drugs worldwide. MicroRNAs are post-transcriptional regulators of gene expression that are highly expressed in brain, and several studies have shown that cocaine can alter their expression. In a previous study, we identified several protein-coding genes that are differentially expressed in a dopaminergic neuron-like model after an acute exposure to cocaine. Now, we used the prediction tool WebGestalt to identify miRNA molecules potentially involved in the regulation of these genes. Using the same cellular model, we found that seven of these miRNAs are down-regulated by cocaine: miR-124-3p, miR-124-5p, miR-137, miR-101-3p, miR-9-5p, miR-369-3p and miR-153-3p, the last three not previously related to cocaine. Furthermore, we found that three of the miRNA genes that are differentially expressed in our model (hsa-miR-9-1, hsa-miR-153-1 and hsa-miR-124-3) are nominally associated with cocaine dependence in a case-control study (2,085 cases and 4,293 controls). In summary, we highlighted novel miRNAs that may be involved in those cocaine-induced changes of gene expression that underlie addiction. Moreover, we identified genetic variants that contribute to cocaine dependence in three of these miRNA genes, supporting the idea that genes differentially expressed under cocaine may play an important role in the susceptibility to cocaine dependence.

8.
Mol Psychiatry ; 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30116028

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder with a complex genetic background, hampering identification of underlying genetic risk factors. We hypothesized that combining linkage analysis and whole-exome sequencing (WES) in multi-generation pedigrees with multiple affected individuals can point toward novel ADHD genes. Three families with multiple ADHD-affected members (Ntotal = 70) and apparent dominant inheritance pattern were included in this study. Genotyping was performed in 37 family members, and WES was additionally carried out in 10 of those. Linkage analysis was performed using multi-point analysis in Superlink Online SNP 1.1. From prioritized linkage regions with a LOD score ≥ 2, a total of 24 genes harboring rare variants were selected. Those genes were taken forward and were jointly analyzed in gene-set analyses of exome-chip data using the MAGMA software in an independent sample of patients with persistent ADHD and healthy controls (N = 9365). The gene-set including all 24 genes together, and particularly the gene-set from one of the three families (12 genes), were significantly associated with persistent ADHD in this sample. Among the latter, gene-wide analysis for the AAED1 gene reached significance. A rare variant (rs151326868) within AAED1 segregated with ADHD in one of the families. The analytic strategy followed here is an effective approach for identifying novel ADHD risk genes. Additionally, this study suggests that both rare and more frequent variants in multiple genes act together in contributing to ADHD risk, even in individual multi-case families.

9.
Mol Psychiatry ; 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858598

RESUMO

Human genome-wide association studies (GWAS), transcriptome analyses of animal models, and candidate gene studies have advanced our understanding of the genetic architecture of aggressive behaviors. However, each of these methods presents unique limitations. To generate a more confident and comprehensive view of the complex genetics underlying aggression, we undertook an integrated, cross-species approach. We focused on human and rodent models to derive eight gene lists from three main categories of genetic evidence: two sets of genes identified in GWAS studies, four sets implicated by transcriptome-wide studies of rodent models, and two sets of genes with causal evidence from online Mendelian inheritance in man (OMIM) and knockout (KO) mice reports. These gene sets were evaluated for overlap and pathway enrichment to extract their similarities and differences. We identified enriched common pathways such as the G-protein coupled receptor (GPCR) signaling pathway, axon guidance, reelin signaling in neurons, and ERK/MAPK signaling. Also, individual genes were ranked based on their cumulative weights to quantify their importance as risk factors for aggressive behavior, which resulted in 40 top-ranked and highly interconnected genes. The results of our cross-species and integrated approach provide insights into the genetic etiology of aggression.

10.
Drug Alcohol Depend ; 187: 358-362, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29715653

RESUMO

BACKGROUND: Substance dependence is a chronic and relapsing disorder explained by genetic and environmental risk factors. The aim of our study is to replicate previous genome-wide significant (GWS) hits identified in substance dependence in general or in cocaine dependence in particular using an independent sample from Spain. METHODS: We evaluated, in a Spanish sample of 1711 subjects with substance dependence (1011 of them cocaine dependent) and 1719 control individuals, three SNPs identified as GWS in previous studies: rs1868152 and rs2952621 (located near LINC02052 and LINC01854, respectively), associated with substance dependence, and rs2629540 (in the first intron of FAM53B), associated with cocaine dependence. RESULTS: We replicated the association between rs2952621 and substance dependence under the dominant model (P = 0.020), with the risk allele (T) being the same in our sample and in those two reported previously. We then performed a meta-analysis of the two samples used in the original study that reported the association of rs2952621 with substance dependence (Collaborative Studies on Genetics of Alcoholism (COGA) and Study of Addiction: Genetics and Environment (SAGE)) together with our Spanish sample. The meta-analysis of 3747 cases and 4043 controls confirmed the association (OR = 1.26, 95% CI = 1.15-1.39). CONCLUSIONS: The rs2952621 variant, located downstream from the yet uncharacterized gene LINC01854, is associated with substance dependence in our Spanish sample. Further research is needed to understand its contribution to the susceptibility to substance dependence.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/genética , Predisposição Genética para Doença , Transtornos Relacionados ao Uso de Substâncias/genética , Meio Ambiente , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Recidiva , Fatores de Risco , Espanha
11.
Science ; 360(6386): 327-331, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29674594

RESUMO

The genetic basis of autism spectrum disorder (ASD) is known to consist of contributions from de novo mutations in variant-intolerant genes. We hypothesize that rare inherited structural variants in cis-regulatory elements (CRE-SVs) of these genes also contribute to ASD. We investigated this by assessing the evidence for natural selection and transmission distortion of CRE-SVs in whole genomes of 9274 subjects from 2600 families affected by ASD. In a discovery cohort of 829 families, structural variants were depleted within promoters and untranslated regions, and paternally inherited CRE-SVs were preferentially transmitted to affected offspring and not to their unaffected siblings. The association of paternal CRE-SVs was replicated in an independent sample of 1771 families. Our results suggest that rare inherited noncoding variants predispose children to ASD, with differing contributions from each parent.


Assuntos
Transtorno do Espectro Autista/genética , Predisposição Genética para Doença , Variação Genética , Herança Paterna , Regiões Promotoras Genéticas/genética , Éxons , Regulação da Expressão Gênica , Genoma Humano , Humanos , Mutação , Linhagem , RNA não Traduzido/genética , Seleção Genética , Deleção de Sequência , Fatores de Transcrição/genética
12.
Sci Rep ; 8(1): 1881, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382897

RESUMO

Methylphenidate (MPH) is the most frequently used pharmacological treatment in children with attention-deficit/hyperactivity disorder (ADHD). However, a considerable interindividual variability exists in clinical outcome. Thus, we performed a genome-wide association study of MPH efficacy in 173 ADHD paediatric patients. Although no variant reached genome-wide significance, the set of genes containing single-nucleotide polymorphisms (SNPs) nominally associated with MPH response (P < 0.05) was significantly enriched for candidates previously studied in ADHD or treatment outcome. We prioritised the nominally significant SNPs by functional annotation and expression quantitative trait loci (eQTL) analysis in human brain, and we identified 33 SNPs tagging cis-eQTL in 32 different loci (referred to as eSNPs and eGenes, respectively). Pathway enrichment analyses revealed an over-representation of genes involved in nervous system development and function among the eGenes. Categories related to neurological diseases, psychological disorders and behaviour were also significantly enriched. We subsequently meta-analysed the association with clinical outcome for the 33 eSNPs across the discovery sample and an independent cohort of 189 ADHD adult patients (target sample) and we detected 15 suggestive signals. Following this comprehensive strategy, our results provide a better understanding of the molecular mechanisms implicated in MPH treatment effects and suggest promising candidates that may encourage future studies.

13.
Sci Rep ; 8(1): 694, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29330474

RESUMO

De novo FOXP1 mutations have been associated with intellectual disability (ID), motor delay, autistic features and a wide spectrum of speech difficulties. C syndrome (Opitz C trigonocephaly syndrome) is a rare and genetically heterogeneous condition, characterized by trigonocephaly, craniofacial anomalies and ID. Several different chromosome deletions and and point mutations in distinct genes have been associated with the disease in patients originally diagnosed as Opitz C. By whole exome sequencing we identified a de novo splicing mutation in FOXP1 in a patient, initially diagnosed as C syndrome, who suffers from syndromic intellectual disability with trigonocephaly. The mutation (c.1428 + 1 G > A) promotes the skipping of exon 16, a frameshift and a premature STOP codon (p.Ala450GLyfs*13), as assessed by a minigene strategy. The patient reported here shares speech difficulties, intellectual disability and autistic features with other FOXP1 syndrome patients, and thus the diagnosis for this patient should be changed. Finally, since trigonocephaly has not been previously reported in FOXP1 syndrome, it remains to be proved whether it may be associated with the FOXP1 mutation.


Assuntos
Craniossinostoses/diagnóstico , Fatores de Transcrição Forkhead/genética , Deficiência Intelectual/diagnóstico , Proteínas Repressoras/genética , Transtorno Autístico/complicações , Transtorno Autístico/diagnóstico , Craniossinostoses/genética , Éxons , Mutação da Fase de Leitura , Humanos , Deficiência Intelectual/genética , Masculino , Processamento de RNA , Distúrbios da Fala/complicações , Distúrbios da Fala/diagnóstico , Sequenciamento Completo do Exoma , Adulto Jovem
14.
Artigo em Inglês | MEDLINE | ID: mdl-29174947

RESUMO

The RBFOX1 gene (or A2BP1) encodes a splicing factor important for neuronal development that has been related to autism spectrum disorder and other neurodevelopmental phenotypes. Evidence from complementary sources suggests that this gene contributes to aggressive behavior. Suggestive associations with RBFOX1 have been identified in genome-wide association studies (GWAS) of anger, conduct disorder, and aggressive behavior. Nominal association signals in RBFOX1 were also found in an epigenome-wide association study (EWAS) of aggressive behavior. Also, variants in this gene affect temporal lobe volume, a brain area that is altered in several aggression-related phenotypes. In animals, this gene has been shown to modulate aggressive behavior in Drosophila. RBFOX1 has also been associated with canine aggression and is upregulated in mice that show increased aggression after frustration of an expected reward. Associated common genetic variants as well as rare duplications and deletions affecting RBFOX1 have been identified in several psychiatric and neurodevelopmental disorders that are often comorbid with aggressive behaviors. In this paper, we comprehensively review the cumulative evidence linking RBFOX1 to aggression behavior and provide new results implicating RBFOX1 in this phenotype. Most of these studies (genetic and epigenetic analyses in humans, neuroimaging genetics, gene expression and animal models) are hypothesis-free, which strengthens the validity of the findings, although all the evidence is nominal and should therefore be taken with caution. Further studies are required to clarify in detail the role of this gene in this complex phenotype.

15.
Sci Rep ; 7(1): 10110, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860459

RESUMO

Genetic factors involved in the susceptibility to drug addiction still remain largely unknown. MiRNAs seem to play key roles in the drug-induced plasticity of the brain that likely drives the emergence of addiction. In this work we explored the role of miRNAs in drug addiction. With this aim, we selected 62 SNPs located in the 3'UTR of target genes that are predicted to alter the binding of miRNA molecules and performed a case-control association study in a Spanish sample of 735 cases (mainly cocaine-dependent subjects with multiple drug dependencies) and 739 controls. We found an association between rs1047383 in the PLCB1 gene and drug dependence that was replicated in an independent sample (663 cases and 667 controls). Then we selected 9 miRNAs predicted to bind the rs1047383 region, but none of them showed any effect on PLCB1 expression. We also assessed two miRNAs binding a region that contains a SNP in linkage disequilibrium with rs1047383, but although one of them, hsa-miR-582, was found to downregulate PLCB1, no differences were observed between alleles. Finally, we explored the possibility that PLCB1 expression is altered by cocaine and we observed a significant upregulation of the gene in the nucleus accumbens of cocaine abusers and in human dopaminergic-like neurons after cocaine treatment. Our results, together with previous studies, suggest that PLCB1 participates in the susceptibility to drug dependence.

16.
Sci Rep ; 7(1): 5407, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710364

RESUMO

Attention Deficit Hyperactivity Disorder (ADHD) is a common childhood-onset neurodevelopmental condition characterized by pervasive impairment of attention, hyperactivity, and/or impulsivity that can persist into adulthood. The aetiology of ADHD is complex and multifactorial and, despite the wealth of evidence for its high heritability, genetic studies have provided modest evidence for the involvement of specific genes and have failed to identify consistent and replicable results. Due to the lack of robust findings, we performed gene-wide and pathway enrichment analyses using pre-existing GWAS data from 607 persistent ADHD subjects and 584 controls, produced by our group. Subsequently, expression profiles of genes surpassing a follow-up threshold of P-value < 1e-03 in the gene-wide analyses were tested in peripheral blood mononucleated cells (PBMCs) of 45 medication-naive adults with ADHD and 39 healthy unrelated controls. We found preliminary evidence for genetic association between RNF122 and ADHD and for its overexpression in adults with ADHD. RNF122 encodes for an E3 ubiquitin ligase involved in the proteasome-mediated processing, trafficking, and degradation of proteins that acts as an essential mediator of the substrate specificity of ubiquitin ligation. Thus, our findings support previous data that place the ubiquitin-proteasome system as a promising candidate for its involvement in the aetiology of ADHD.

17.
Sci Rep ; 7(1): 2514, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28566750

RESUMO

Episodic ataxia is an autosomal dominant ion channel disorder characterized by episodes of imbalance and incoordination. The disease is genetically heterogeneous and is classified as episodic ataxia type 2 (EA2) when it is caused by a mutation in the CACNA1A gene, encoding the α1A subunit of the P/Q-type voltage-gated calcium channel Cav2.1. The vast majority of EA2 disease-causing variants are loss-of-function (LoF) point changes leading to decreased channel currents. CACNA1A exonic deletions have also been reported in EA2 using quantitative approaches. We performed a mutational screening of the CACNA1A gene, including the promoter and 3'UTR regions, in 49 unrelated patients diagnosed with episodic ataxia. When pathogenic variants were not found by sequencing, we performed a copy number variant (CNV) analysis to screen for duplications or deletions. Overall, sequencing screening allowed identification of six different point variants (three nonsense and three missense changes) and two coding indels, one of them found in two unrelated patients. Additionally, CNV analysis identified a deletion in a patient spanning exon 35 as a result of a recombination event between flanking intronic Alu sequences. This study allowed identification of potentially pathogenic alterations in our sample, five of them novel, which cover 20% of the patients (10/49). Our data suggest that most of these variants are disease-causing, although functional studies are required.

18.
Sci Rep ; 7: 44138, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28281571

RESUMO

Opitz trigonocephaly C syndrome (OTCS) is a rare genetic disorder characterized by craniofacial anomalies, variable intellectual and psychomotor disability, and variable cardiac defects with a high mortality rate. Different patterns of inheritance and genetic heterogeneity are known in this syndrome. Whole exome and genome sequencing of a 19-year-old girl (P7), initially diagnosed with OTCS, revealed a de novo nonsense mutation, p.Q638*, in the MAGEL2 gene. MAGEL2 is an imprinted, maternally silenced, gene located at 15q11-13, within the Prader-Willi region. Patient P7 carried the mutation in the paternal chromosome. Recently, mutations in MAGEL2 have been described in Schaaf-Yang syndrome (SHFYNG) and in severe arthrogryposis. Patient P7 bears resemblances with SHFYNG cases but has other findings not described in this syndrome and common in OTCS. We sequenced MAGEL2 in nine additional OTCS patients and no mutations were found. This study provides the first clear molecular genetic basis for an OTCS case, indicates that there is overlap between OTCS and SHFYNG syndromes, and confirms that OTCS is genetically heterogeneous. Genes encoding MAGEL2 partners, either in the retrograde transport or in the ubiquitination-deubiquitination complexes, are promising candidates as OTCS disease-causing genes.


Assuntos
Craniossinostoses , Deficiência Intelectual , Mutação de Sentido Incorreto , Proteínas , Adulto , Craniossinostoses/genética , Craniossinostoses/metabolismo , Feminino , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Proteínas/genética , Proteínas/metabolismo
19.
Autism Res ; 10(2): 202-211, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27417655

RESUMO

Common variants contribute significantly to the genetics of autism spectrum disorder (ASD), although the identification of individual risk polymorphisms remains still elusive due to their small effect sizes and limited sample sizes available for association studies. During the last decade several genome-wide association studies (GWAS) have enabled the detection of a few plausible risk variants. The three main studies are family-based and pointed at SEMA5A (rs10513025), MACROD2 (rs4141463) and MSNP1 (rs4307059). In our study we attempted to replicate these GWAS hits using a case-control association study in five European populations of ASD patients and gender-matched controls, all Caucasians. Results showed no association of individual variants with ASD in any of the population groups considered or in the combined European sample. We performed a meta-analysis study across five European populations for rs10513025 (1,904 ASD cases and 2,674 controls), seven European populations for rs4141463 (2,855 ASD cases and 36,177 controls) and five European populations for rs4307059 (2,347 ASD cases and 2,764 controls). The results showed an odds ratio (OR) of 1.05 (95% CI = 0.84-1.32) for rs10513025, 1.0002 (95% CI = 0.93-1.08) for rs4141463 and 1.01 (95% CI = 0.92-1.1) for rs4307059, with no significant P-values (rs10513025, P = 0.73; rs4141463, P = 0.95; rs4307059, P = 0.9). No association was found when we considered either only high functioning autism (HFA), genders separately or only multiplex families. Ongoing GWAS projects with larger ASD cohorts will contribute to clarify the role of common variation in the disorder and will likely identify risk variants of modest effect not detected previously. Autism Res 2017, 10: 202-211. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.


Assuntos
Transtorno do Espectro Autista/genética , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Estudos de Casos e Controles , Europa (Continente) , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Reprodutibilidade dos Testes
20.
J Pain ; 18(4): 366-375, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27919769

RESUMO

Migraine with aura is a subtype of migraine characterized by transient neurological disturbances that usually precede headache. Cortical spreading depression (CSD) is the likely pathophysiological correlate of the aura phase of migraine, found in common and rare forms of migraine, such as familial hemiplegic migraine. CSD is a depolarization wave that propagates across the cerebral gray matter transiently suppressing neuronal activity. Prophylactic treatments for migraine, such as topiramate or valproate, reduce the number of CSD events. We evaluated changes in gene expression in rat cortex and brainstem after inducing CSD in the cortex, with and without a prophylactic treatment with topiramate or valproate. CSD induction showed similar transcriptomic profiles with and without treatment in cortex, involving genes related to hormone stimulus, apoptosis, synaptic transmission, and interleukin signaling. In brainstem, CSD with and without treatment, although to a lesser extent, also induced gene expression changes involving genes related to apoptosis. Half of the genes altered in brainstem after CSD were also differentially expressed in the same direction in cortex. No differences in gene expression were identified after CSD as a consequence of the treatments, neither in cortex nor in brainstem. PERSPECTIVE: Our results suggest that early after triggering the CSD, similar consequences are seen at the genetic level with or without prophylactic treatment. Gene expression changes induced by CSD in cortex and brainstem may help to better understand the underlying mechanisms and identify targets for therapeutic approaches.


Assuntos
Tronco Encefálico/metabolismo , Córtex Cerebral/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Frutose/análogos & derivados , Transcriptoma/efeitos dos fármacos , Ácido Valproico/farmacologia , Animais , Tronco Encefálico/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Frutose/farmacologia , Redes Reguladoras de Genes/efeitos dos fármacos , Masculino , Fármacos Neuroprotetores/farmacologia , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Topiramato , Transcriptoma/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA