Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Plants (Basel) ; 10(6)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198660

RESUMO

Ethylene is a plant hormone controlling physiological and developmental processes such as fruit maturation, hairy root formation, and leaf abscission. Its effect on regeneration systems, such as organogenesis and somatic embryogenesis (SE), has been studied, and progress in molecular biology techniques have contributed to unveiling the mechanisms behind its effects. The influence of ethylene on regeneration should not be overlooked. This compound affects regeneration differently, depending on the species, genotype, and explant. In some species, ethylene seems to revert recalcitrance in genotypes with low regeneration capacity. However, its effect is not additive, since in genotypes with high regeneration capacity this ability decreases in the presence of ethylene precursors, suggesting that regeneration is modulated by ethylene. Several lines of evidence have shown that the role of ethylene in regeneration is markedly connected to biotic and abiotic stresses as well as to hormonal-crosstalk, in particular with key regeneration hormones and growth regulators of the auxin and cytokinin families. Transcriptional factors of the ethylene response factor (ERF) family are regulated by ethylene and strongly connected to SE induction. Thus, an evident connection between ethylene, stress responses, and regeneration capacity is markedly established. In this review the effect of ethylene and the way it interacts with other players during organogenesis and somatic embryogenesis is discussed. Further studies on the regulation of ERF gene expression induced by ethylene during regeneration can contribute to new insights on the exact role of ethylene in these processes. A possible role in epigenetic modifications should be considered, since some ethylene signaling components are directly related to histone acetylation.

2.
Plants (Basel) ; 10(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803088

RESUMO

Small non-coding RNAs (sncRNAs) are molecules with important regulatory functions during development and environmental responses across all groups of terrestrial plants. In seed plants, the development of a mature embryo from the zygote follows a synchronized cell division sequence, and growth and differentiation events regulated by highly regulated gene expression. However, given the distinct features of the initial stages of embryogenesis in gymnosperms and angiosperms, it is relevant to investigate to what extent such differences emerge from differential regulation mediated by sncRNAs. Within these, the microRNAs (miRNAs) are the best characterized class, and while many miRNAs are conserved and significantly represented across angiosperms and other seed plants during embryogenesis, some miRNA families are specific to some plant lineages. Being a model to study zygotic embryogenesis and a relevant biotechnological tool, we systematized the current knowledge on the presence and characterization of miRNAs in somatic embryogenesis (SE) of seed plants, pinpointing the miRNAs that have been reported to be associated with SE in angiosperm and gymnosperm species. We start by conducting an overview of sncRNA expression profiles in the embryonic tissues of seed plants. We then highlight the miRNAs described as being involved in the different stages of the SE process, from its induction to the full maturation of the somatic embryos, adding references to zygotic embryogenesis when relevant, as a contribution towards a better understanding of miRNA-mediated regulation of SE.

3.
Front Plant Sci ; 12: 631239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912202

RESUMO

Somatic embryogenesis is the process by which bipolar structures with no vascular connection with the surrounding tissue are formed from a single or a group of vegetative cells, and in conifers it can be divided into five different steps: initiation, proliferation, maturation, germination and acclimatization. Somatic embryogenesis has long been used as a model to study the mechanisms regulating stress response in plants, and recent research carried out in our laboratory has demonstrated that high temperatures during initial stages of conifer somatic embryogenesis modify subsequent phases of the process, as well as the behavior of the resulting plants ex vitro. The development of high-throughput techniques has facilitated the study of the molecular response of plants to numerous stress factors. Proteomics offers a reliable image of the cell status and is known to be extremely susceptible to environmental changes. In this study, the proteome of radiata pine somatic embryos was analyzed by LC-MS after the application of high temperatures during initiation of embryonal masses [(23°C, control; 40°C (4 h); 60°C (5 min)]. At the same time, the content of specific soluble sugars and sugar alcohols was analyzed by HPLC. Results confirmed a significant decrease in the initiation rate of embryonal masses under 40°C treatments (from 44 to 30.5%) and an increasing tendency in the production of somatic embryos (from 121.87 to 170.83 somatic embryos per gram of embryogenic tissue). Besides, heat provoked a long-term readjustment of the protein synthesis machinery: a great number of structural constituents of ribosomes were increased under high temperatures, together with the down-regulation of the enzyme methionine-tRNA ligase. Heat led to higher contents of heat shock proteins and chaperones, transmembrane transport proteins, proteins related with post-transcriptional regulation (ARGONAUTE 1D) and enzymes involved in the synthesis of fatty acids, specific compatible sugars (myo-inositol) and cell-wall carbohydrates. On the other hand, the protein adenosylhomocysteinase and enzymes linked with the glycolytic pathway, nitrogen assimilation and oxidative stress response were found at lower levels.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 252: 119501, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33571737

RESUMO

Tamarillo (tree tomato) is a subtropical tree that produces edible fruits with health-beneficial properties, since it contains several components with potential therapeutic and chemoprotective activity. The present work reports the first complete vibrational study (Raman and infrared) of this edible fruit. This approach allowed us to determine where the most relevant nutraceutical compounds are located in the fruit, as well as their relative amounts. Particular vibrational signatures were obtained for each part of the fruit, reporting different components for the epicarp (outer and inner sections), the pulp and the seeds, especially regarding the content in phenolic compounds, unsaturated fatty acids/esters and polymeric chains from the cuticular wax. Valuable information, at the molecular level was gathered regarding the nutricional value of tamarillo's fruit, for its different fractions. This is expected to pave the way for its introduction as a promising nutraceutical, based on the potential therapeutic properties of its main components.


Assuntos
Suplementos Nutricionais , Frutas , Fenóis , Frutas/química , Fenóis/análise , Vibração
5.
Sci Rep ; 10(1): 18569, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33122760

RESUMO

Long-term monitoring of host-parasite interactions is important for understanding the consequences of infection on host fitness and population dynamics. In an eight-year survey of the loggerhead sea turtle (Caretta caretta) population nesting in Cabo Verde, we determined the spatiotemporal variation of Ozobranchus margoi, a sanguivorous leech best known as a vector for sea turtle fibropapilloma virus. We quantified O. margoi association with turtles' δ15N and δ13C stable isotopes to identify where infection occurs. We then measured the influence of infection on reproduction and offspring fitness. We found that parasite prevalence has increased from 10% of the population in 2010, to 33% in 2017. Stable isotope analysis of host skin samples suggests transmission occurs within the host's feeding grounds. Interestingly, we found a significant interaction between individual size and infection on the reproductive success of turtles. Specifically, small, infected females produced fewer offspring of poorer condition, while in contrast, large, infected turtles produced greater clutch sizes and larger offspring. We interpret this interaction as evidence, upon infection, for a size-dependent shift in reproductive strategy from bet hedging to terminal investment, altering population dynamics. This link between infection and reproduction underscores the importance of using long-term monitoring to quantify the impact of disease dynamics over time.


Assuntos
Doenças Parasitárias em Animais/fisiopatologia , Tartarugas/parasitologia , Animais , Ecologia , Feminino , Interações Hospedeiro-Parasita , Sanguessugas/crescimento & desenvolvimento , Sanguessugas/fisiologia , Sanguessugas/virologia , Dinâmica Populacional , Reprodução , Tartarugas/crescimento & desenvolvimento , Tartarugas/fisiologia
6.
Sci Rep ; 10(1): 18001, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093463

RESUMO

Understanding the processes that underlie the current distribution of genetic diversity in endangered species is a goal of modern conservation biology. Specifically, the role of colonization and dispersal events throughout a species' evolutionary history often remains elusive. The loggerhead sea turtle (Caretta caretta) faces multiple conservation challenges due to its migratory nature and philopatric behaviour. Here, using 4207 mtDNA sequences, we analysed the colonisation patterns and distribution of genetic diversity within a major ocean basin (the Atlantic), a regional rookery (Cabo Verde Archipelago) and a local island (Island of Boa Vista, Cabo Verde). Data analysis using hypothesis-driven population genetic models suggests the colonization of the Atlantic has occurred in two distinct waves, each corresponding to a major mtDNA lineage. We propose the oldest lineage entered the basin via the isthmus of Panama and sequentially established aggregations in Brazil, Cabo Verde and in the area of USA and Mexico. The second lineage entered the Atlantic via the Cape of Good Hope, establishing colonies in the Mediterranean Sea, and from then on, re-colonized the already existing rookeries of the Atlantic. At the Cabo Verde level, we reveal an asymmetric gene flow maintaining links across island-specific nesting groups, despite significant genetic structure. This structure stems from female philopatric behaviours, which could further be detected by weak but significant differentiation amongst beaches separated by only a few kilometres on the island of Boa Vista. Exploring biogeographic processes at diverse geographic scales improves our understanding of the complex evolutionary history of highly migratory philopatric species. Unveiling the past facilitates the design of conservation programmes targeting the right management scale to maintain a species' evolutionary potential.


Assuntos
Evolução Biológica , DNA Mitocondrial/genética , Fluxo Gênico , Variação Genética , Genética Populacional , Mitocôndrias/genética , Tartarugas/genética , Animais , Brasil , Cabo Verde , DNA Mitocondrial/análise , Mar Mediterrâneo , México , Panamá , Estados Unidos
7.
EFSA J ; 18(2): e05965, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32874211

RESUMO

Qualified presumption of safety (QPS) was developed to provide a generic safety evaluation for biological agents to support EFSA's Scientific Panels. The taxonomic identity, body of knowledge, safety concerns and antimicrobial resistance are assessed. Safety concerns identified for a taxonomic unit (TU) are where possible to be confirmed at strain or product level, reflected by 'qualifications'. No new information was found that would change the previously recommended QPS TUs and their qualifications. The list of microorganisms notified to EFSA was updated with 54 biological agents, received between April and September 2019; 23 already had QPS status, 14 were excluded from the QPS exercise (7 filamentous fungi, 6 Escherichia coli, Sphingomonas paucimobilis which was already evaluated). Seventeen, corresponding to 16 TUs, were evaluated for possible QPS status, fourteen of these for the first time, and Protaminobacter rubrum, evaluated previously, was excluded because it is not a valid species. Eight TUs are recommended for QPS status. Lactobacillus parafarraginis and Zygosaccharomyces rouxii are recommended to be included in the QPS list. Parageobacillus thermoglucosidasius and Paenibacillus illinoisensis can be recommended for the QPS list with the qualification 'for production purposes only' and absence of toxigenic potential. Bacillus velezensis can be recommended for the QPS list with the qualification 'absence of toxigenic potential and the absence of aminoglycoside production ability'. Cupriavidus necator, Aurantiochytrium limacinum and Tetraselmis chuii can be recommended for the QPS list with the qualification 'production purposes only'. Pantoea ananatis is not recommended for the QPS list due to lack of body of knowledge in relation to its pathogenicity potential for plants. Corynebacterium stationis, Hamamotoa singularis, Rhodococcus aetherivorans and Rhodococcus ruber cannot be recommended for the QPS list due to lack of body of knowledge. Kodamaea ohmeri cannot be recommended for the QPS list due to safety concerns.

8.
EFSA J ; 18(2): e05966, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32874212

RESUMO

The qualified presumption of safety (QPS) was developed to provide a safety pre-assessment within EFSA for microorganisms. Strains belonging to QPS taxonomic units (TUs) still require an assessment based on a specific data package, but QPS status facilitates fast track evaluation. QPS TUs are unambiguously defined biological agents assessed for the body of knowledge, their safety and their end use. Safety concerns are, where possible, to be confirmed at strain or product level, and reflected as 'qualifications'. Qualifications need to be evaluated at strain level by the respective EFSA units. The lowest QPS TU is the species level for bacteria, yeasts and protists/algae, and the family for viruses. The QPS concept is also applicable to genetically modified microorganisms used for production purposes if the recipient strain qualifies for the QPS status, and if the genetic modification does not indicate a concern. Based on the actual body of knowledge and/or an ambiguous taxonomic position, the following TUs were excluded from the QPS assessment: filamentous fungi, oomycetes, streptomycetes, Enterococcus faecium, Escherichia coli and bacteriophages. The list of QPS-recommended biological agents was reviewed and updated in the current opinion and therefore now becomes the valid list. For this update, reports on the safety of previously assessed microorganisms, including bacteria, yeasts and viruses (the latter only when used for plant protection purposes) were reviewed, following an Extensive Literature Search strategy. All TUs previously recommended for 2016 QPS list had their status reconfirmed as well as their qualifications. The TUs related to the new notifications received since the 2016 QPS opinion was periodically evaluated for QPS status in the Statements of the BIOHAZ Panel, and the QPS list was also periodically updated. In total, 14 new TUs received a QPS status between 2017 and 2019: three yeasts, eight bacteria and three algae/protists.

9.
J Phys Chem Lett ; 11(15): 6249-6255, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32643938

RESUMO

The poor photochemical stability of R-phycoerythrin (R-PE) has been a bottleneck for its broad-spectrum applications. Inspired by nature, we studied a sustainable strategy of protein cohabitation to enhance R-PE stability by embedding it in a solid matrix of gelatin. Both pure R-PE and fresh phycobiliprotein (PBP) extracts recovered from Gracilaria gracilis were studied. The incorporation of R-PE in the gelatin-based films (gelatin-RPE and gelatin-PBPs) has improved its photochemical stability for at least 8 months, the longest time period reported so far. These results were evidenced by not only absorption but also emission quantum yield measurements (Φ). Moreover, the photostability of gelatin-RPE films upon continuous excitation with an AM1.5G solar simulator was tested and found to remain stable for 23 h after initial decreasing up to 250 min. In the end, another approach was established to allow 100% photostability for a 3 h exposure to an AM1.5G solar simulator by doping the gelatin-based film including R-Phycoerythrin with n-propyl gallate stabilized with Tween 80, allowing their use as naturally based optically active centers in photovoltaic applications.


Assuntos
Gracilaria/química , Ficoeritrina/química , Extratos Vegetais/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Gelatina/química , Cinética , Processos Fotoquímicos , Fotossíntese , Polissorbatos/química , Galato de Propila/química , Estabilidade Proteica/efeitos da radiação , Oxigênio Singlete/química , Espectrometria de Fluorescência , Temperatura , Fatores de Tempo
10.
Adv Sci (Weinh) ; 6(19): 1900950, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31592146

RESUMO

Quick Response (QR) codes are a gateway to the Internet of things (IoT) due to the growing use of smartphones/mobile devices and its properties like fast and easy reading, capacity to store more information than that found in conventional codes, and versatility associated to the rapid and simplified access to information. Challenges encompass the enhancement of storage capacity limits and the evolution to a smart label for mobile devices decryption applications. Organic-inorganic hybrids with europium (Eu3+) and terbium (Tb3+) ions are processed as luminescent QR codes that are able to simultaneously double the storage capacity and sense temperature in real time using a photo taken with the charge-coupled device of a smartphone. The methodology based on the intensity of the red and green pixels of the photo yields a maximum relative sensitivity and minimum temperature uncertainty of the QR code sensor (293 K) of 5.14% · K-1 and 0.194 K, respectively. As an added benefit, the intriguing performance results from energy transfer involving the thermal coupling between the Tb3+-excited level (5D4) and the low-lying triplet states of organic ligands, being the first example of an intramolecular primary thermometer. A mobile app is developed to materialize the concept of temperature reading through luminescent QR codes.

11.
Front Plant Sci ; 10: 438, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024602

RESUMO

Somatic embryogenesis (SE) is an important biotechnological tool for large-scale clonal propagation and for embryogenesis research. Moreover, genetic transformation and cryopreservation procedures in many species rely on efficient SE protocols. We have been studying different aspects related to SE induction and somatic embryo development in tamarillo (Solanum betaceum Cav.), a small tree from the Solanaceae family. Previous proteomic analyses identified a protein (NEP-TC, 26.5 kDa) consistently present in non-embryogenic calluses of tamarillo, but absent in the embryogenic ones. In this work, the role of NEP-TC during SE was assessed by gene expression analysis and immunolocalization. The results obtained demonstrated that NEP-TC is a putative member of the SpoU rRNA methylase family. This protein, present in the cytoplasm and nucleus, is expressed in non-embryogenic cells and not expressed in embryogenic cells. Slightly enhanced SE induction levels in tamarillo plants with NEP-TC down-regulated levels also supports the role of this protein on SE induction. Heterologous expression was used to confirm NEP-TC rRNA methyltransferase activity, with enhanced activity levels when rRNA was used as a substrate. These data relate a putative member of the SpoU methylase family with plant morphogenesis, in particular with SE induction.

12.
BMJ Case Rep ; 12(4)2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31028048

RESUMO

Vasculitis presents several diagnostic challenges. Herein, we present a clinical case of a 71- year old woman, observed in our emergency department due to asthenia, vomiting and persistent cough. The patient had a history of progressive renal failure and anaemia over the last years. On physical examinations, fine pulmonary crackles were detected and laboratory test showed haemoglobin 69 g/L, creatinine 4 mg/dL, potassium 6.3 mmol/L, positive antineutrophil cytoplasm antibody (ANCA), with proteins and dimorphic erythrocytes in the urinary sediment. CT analysis of the thorax revealed patchy ground glass haziness, likely due to diffuse alveolar haemorrhage. Pulmonary-renal syndrome was assumed, and induction therapy was initiated. She was discharged after 33 days of hospitalisation. On the following months, ANCA titres remained undetectable, but minor recovery of renal function was observed, requiring haemodialysis. Indeed, the use of aggressive induction therapy at early stage dramatically improve prognosis, maintenance of disease remission may be difficult, as relapse is frequent.


Assuntos
Ciclofosfamida/uso terapêutico , Glomerulonefrite/diagnóstico , Hemorragia/diagnóstico , Imunossupressores/uso terapêutico , Pneumopatias/diagnóstico , Plasmaferese/métodos , Idoso , Progressão da Doença , Feminino , Glomerulonefrite/fisiopatologia , Glomerulonefrite/terapia , Hemorragia/fisiopatologia , Hemorragia/terapia , Humanos , Pneumopatias/fisiopatologia , Pneumopatias/terapia , Radiografia Torácica , Resultado do Tratamento
13.
EFSA J ; 17(1): e05555, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32626100

RESUMO

The qualified presumption of safety (QPS) procedure was developed to provide a harmonised generic pre-evaluation to support safety risk assessments of biological agents performed by EFSA's Scientific Panels. The taxonomic identity, body of knowledge, safety concerns and antimicrobial resistance were assessed. Safety concerns identified for a taxonomic unit are, where possible and reasonable in number, reflected by 'qualifications' which should be assessed at the strain level by the EFSA's Scientific Panels. During the current assessment, no new information was found that would change the previously recommended QPS taxonomic units and their qualifications. Between April and September 2018, the QPS notification list was updated with 48 microorganisms from applications for market authorisation. Of these, 30 biological agents already had QPS status, 15 were excluded from the QPS exercise by the previous QPS mandate (five filamentous fungi) or from further evaluations within the current mandate (two notifications of Enterococcus faecium, one of Streptomyces spp. and seven of Escherichia coli). One taxonomic unit was (re)evaluated: Pseudomonas fluorescens had been previously evaluated in 2016, and was now re-evaluated within this mandate. The revision of the literature supports the previously identified safety concerns (e.g. production of biocompounds with antimicrobial activity and virulence features), preventing the inclusion of P. fluorescens in the QPS list. Mycobacterium setense and Komagataeibacter sucrofermentans were evaluated for the first time. M. setense cannot be considered for the QPS assessment because there are significant safety concerns. K. sucrofermentans (Acetobacter xylinus subsp. sucrofermentans) can be proposed for the QPS list but only for production purposes. The QPS status of Corynebacterium glutamicum is confirmed with the qualification extended to other production purposes.

14.
EFSA J ; 17(7): e05753, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32626372

RESUMO

The qualified presumption of safety (QPS) procedure was developed to provide a harmonised generic pre-evaluation to support safety risk assessments of biological agents performed by EFSA's Scientific Panels. The taxonomic identity, body of knowledge, safety concerns and antimicrobial resistance were assessed. Safety concerns identified for a taxonomic unit (TU) are, where possible and reasonable in number, reflected by 'qualifications' which should be assessed at the strain level by the EFSA's Scientific Panels. During the current assessment, no new information was found that would change the previously recommended QPS TUs and their qualifications. The list of microorganisms notified to EFSA from applications for market authorisation was updated with 47 biological agents, received between October 2018 and March 2019. Of these, 19 already had QPS status, 20 were excluded from the QPS exercise by the previous QPS mandate (11 filamentous fungi) or from further evaluations within the current mandate (9 notifications of Escherichia coli). Sphingomonas elodea, Gluconobacter frateurii, Corynebacterium ammoniagenes, Corynebacterium casei, Burkholderia ubonensis, Phaeodactylum tricornutum, Microbacterium foliorum and Euglena gracilis were evaluated for the first time. Sphingomonas elodea cannot be assessed for a possible QPS recommendation because it is not a valid species. Corynebacterium ammoniagenes and Euglena gracilis can be recommended for the QPS list with the qualification 'for production purposes only'. The following TUs cannot be recommended for the QPS list: Burkholderia ubonensis, due to its potential and confirmed ability to generate biologically active compounds and limited of body of knowledge; Corynebacterium casei, Gluconobacter frateurii and Microbacterium foliorum, due to lack of body of knowledge; Phaeodactylum tricornutum, based on the lack of a safe history of use in the food chain and limited knowledge on its potential production of bioactive compounds with possible toxic effects.

15.
FEMS Microbiol Lett ; 366(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30535073

RESUMO

Microorganisms are intentionally added at different stages of the food and feed chain (food or feed additive, novel food or plant protection product) and are subjected to regulation and safety assessment by the European Food Safety Authority. Safety evaluation is based on application dossiers for market authorisation to the European Commission. The qualified presumption of safety (QPS) concept was developed in 20031 to provide a harmonised generic safety pre-appraisal of the above microorganisms. Unambiguously defined biological taxonomic units (TUs) are assessed for their body of knowledge, their safety and their end use. Identified safety concerns for a certain TU can be, where reasonable in number and not universally present, reflected as 'qualifications.' Strains belonging to TUs having QPS status may benefit of a fast track evaluation. The lowest TU for which the QPS status is granted is the species level for bacteria and yeasts and the family for viruses. The QPS concept is also applicable to genetically modified microorganisms used for production purposes. Based on the current body of knowledge and/or the ambiguous taxonomic position, some TUs, such as filamentous fungi, bacteriophages, Enterococcus faecium, Escherichia coli, Streptomyces spp. and Oomycetes, are not considered liable for QPS status.


Assuntos
Microbiologia de Alimentos/normas , Medição de Risco , Ração Animal/microbiologia , Ração Animal/normas , Ração Animal/virologia , Animais , Europa (Continente) , Alimentos/normas , Alimentos/virologia , Microbiologia de Alimentos/tendências , Humanos
16.
Clin Exp Ophthalmol ; 46(7): 783-795, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29442423

RESUMO

BACKGROUND: Neuropeptide Y (NPY) is a neuromodulator that is expressed in the retina. Increasing evidence suggests that NPY has pronounced anti-inflammatory effects, which might depend on the inhibition of dipeptidyl-peptidase-IV (DPP-IV). The aim of this study was to investigate the impact of type 1 diabetes mellitus (DM) and sitagliptin, a DPP-IV inhibitor, on the NPY system in the retina using an animal model. METHODS: Type 1 DM was induced in male Wistar rats by an intraperitoneal injection of streptozotocin. Starting 2 weeks after DM onset, animals were treated orally with sitagliptin (5 mg/kg.day) for 2 weeks. The expression of NPY and NPY receptors (Y1 , Y2 and Y5 receptors) was measured by quantitative polymerase chain reaction, Western blot and/or enzyme-linked immunosorbent assay. The immunoreactivity of NPY and NPY receptors was evaluated by immunohistochemistry, and the [35 S]GTPγS binding assay was used to assess the functional binding of NPY receptors. RESULTS: DM decreased the mRNA levels of NPY in the retina, as well as the protein levels of NPY and Y5 receptor. No changes were detected in the localization of NPY and NPY receptors in the retina and in the functional binding of NPY to all receptors. Sitagliptin alone reduced retinal NPY mRNA levels. The effects of DM on the NPY system were not affected by sitagliptin. CONCLUSION: DM modestly affects the NPY system in the retina and these effects are not prevented by sitagliptin treatment. These observations suggest that DPP-IV enzyme is not underlying the NPY changes detected in the retina induced by type 1 DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1/tratamento farmacológico , Retinopatia Diabética/genética , Regulação da Expressão Gênica , Neuropeptídeo Y/biossíntese , Retina/metabolismo , Fosfato de Sitagliptina/uso terapêutico , Animais , Western Blotting , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Retinopatia Diabética/etiologia , Retinopatia Diabética/prevenção & controle , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Masculino , Reação em Cadeia da Polimerase , RNA/genética , Distribuição Aleatória , Ratos , Ratos Wistar , Retina/patologia
17.
EFSA J ; 16(1): e05131, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32625678

RESUMO

The qualified presumption of safety (QPS) concept was developed to provide a harmonised generic pre-evaluation to support safety risk assessments of biological agents performed by EFSA's scientific Panels. The identity, body of knowledge, safety concerns and antimicrobial resistance of valid taxonomic units were assessed. Safety concerns identified for a taxonomic unit are, where possible and reasonable in number, considered to be 'qualifications' which should be assessed at the strain level by the EFSA's scientific Panels. No new information was found that would change the previously recommended QPS taxonomic units and their qualifications. The BIOHAZ Panel confirms that the QPS approach can be extended to a genetically modified production strain if the recipient strain qualifies for the QPS status, and if the genetic modification does not indicate a concern. Between April and September 2017, the QPS notification list was updated with 46 applications for market authorisation. From these, 14 biological agents already had QPS status and 16 were not included as they are filamentous fungi or enterococci. One notification of Streptomyces K-61 (notified as former S. griseoviridis) and four of Escherichia coli were not considered for the assessment as they belong to taxonomic units that were excluded from further evaluations within the current QPS mandate. Eight notifications of Bacillus thuringiensis and one of an oomycete are pending the reception of the complete application. Two taxonomic units were evaluated: Kitasatospora paracochleata, which had not been evaluated before, and Komagataella phaffii, previously notified as Pichia pastoris included due to a change in the taxonomic identity. Kitasatospora paracochleata cannot be granted QPS status due to lack of information on its biology and to its possible production of toxic secondary metabolites. The species Komagataella phaffii can be recommended for the QPS list when used for enzyme production.

18.
EFSA J ; 16(6): e05281, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32625925

RESUMO

EFSA received an application from the Dutch Competent Authority, under Article 20 of Regulation (EC) No 1069/2009 and Regulation (EU) No 142/2011, for the evaluation of an alternative method for treatment of Category 3 animal by-products (ABP). It consists of the hydrolysis of the material to short-carbon chains, resulting in medium-chain fatty acids that may contain up to 1% hydrolysed protein, for use in animal feed. A physical process, with ultrafiltration followed by nanofiltration to remove hazards, is also used. Process efficacy has been evaluated based on the ability of the membrane barriers to retain potential biological hazards present. Small viruses passing the ultrafiltration membrane will be retained at the nanofiltration step, which represents a Critical Control Point (CCP) in the process. This step requires the Applicant to validate and provide certification for the specific use of the nanofiltration membranes used. Continuous monitoring and membrane integrity tests should be included as control measures in the HACCP plan. The ultrafiltration and nanofiltration techniques are able to remove particles of the size of virus, bacteria and parasites from liquids. If used under controlled and appropriate conditions, the processing methods proposed should reduce the risk in the end product to a degree which is at least equivalent to that achieved with the processing standards laid down in the Regulation for Category 3 material. The possible presence of small bacterial toxins produced during the fermentation steps cannot be avoided by the nanofiltration step and this hazard should be controlled by a CCP elsewhere in the process. The limitations specified in the current legislation and any future modifications in relation to the end use of the product also apply to this alternative process, and no hydrolysed protein of ruminant origin (except ruminant hides and skins) can be included in feed for farmed animals or for aquaculture.

19.
EFSA J ; 16(7): e05315, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32625958

RESUMO

The qualified presumption of safety (QPS) was developed to provide a harmonised generic pre-evaluation procedure to support safety risk assessments of biological agents performed by EFSA's Scientific Panels. The identity, body of knowledge, safety concerns and antimicrobial resistance of valid taxonomic units were assessed. Safety concerns identified for a taxonomic unit are, where possible and reasonable in number, reflected by 'qualifications' which should be assessed at the strain level by the EFSA's Scientific Panels. During the current assessment, no new information was found that would change the previously recommended QPS taxonomic units and their qualifications. The Panel clarified that the qualification 'for production purpose only' implies the absence of viable cells of the production organism in the final product and can also be applied for food and feed products based on microbial biomass. Between September 2017 and March 2018, the QPS notification list was updated with 46 microorganisms from applications for market authorisation. From these, 28 biological agents already had QPS status, 15 were excluded of the QPS exercise from the previous QPS mandate (10 filamentous fungi and one bacteriophage) or from further evaluations within the current mandate (two notifications of Streptomyces spp. and one of Escherichia coli), and one was excluded where confirmatory data for the risk assessment of a plant protection product (PPP) was requested (Pseudomonas sp.). Three taxonomic units were (re)evaluated: Paracoccus carotinifaciens and Paenibacillus lentus had been previously evaluated in 2008 and 2014, respectively, and were now re-evaluated within this mandate, and Yarrowia lipolytica, which was evaluated for the first time. P. carotinifaciens and P. lentus cannot be granted QPS status due to lack of scientific knowledge. Y. lipolytica is recommended for QPS status, but only for production purpose.

20.
Polymers (Basel) ; 10(4)2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-30966469

RESUMO

In order to prepare efficient luminescent organic⁻inorganic hybrid materials embedded with a lanthanide (Ln3+) complex with polycarboxylate ligands, Ln3+-doped di-ureasils with 4,4-oxybis(benzoic acid) and 1,10-phenanthroline ligands were synthesized via an in-situ sol⁻gel route. The resulting hybrids were structurally, thermally, and optically characterized. The energy levels of the ligands and the host-to-ion and ligand-to-ion energy transfer mechanisms were investigated (including DFT/TD⁻DFT calculations). The results show that these Ln3+-based di-ureasil hybrids exhibit promising luminescent features, e.g., Eu3+-based materials are bright red emitters displaying quantum yields up to 0.50 ± 0.05. The luminescent color can be fine-tuned either by selection of adequate Ln3+ ions or by variation of the excitation wavelength. Accordingly, white light emission with CIE coordinates of (0.33, 0.35) under 310 nm irradiation was obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...