Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Cardiol ; : 1-6, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31583969

RESUMO

Background: Familial dilated cardiomyopathy (DCM) is genetically heterogeneous and is associated with mutations in at least 40 different genes. Apart from TTN encoding the giant protein Titin, none of these genes have an expected diagnostic yield of more than 5% complicating genetic diagnosis. Whole exome sequencing (WES) is a powerful alternative for the identification of the causal gene, however variant interpretation remains challenging. We report on WES in a large family with autosomal dominant DCM complicated by end stage heart failure and non-sustained ventricular arrhythmias in whom no causative mutation was identified using a targeted gene panel including 28 genes. Methods and results: WES was applied on 2 affected cousins. Stringent filtering of the identified genetic variants was performed including population variant frequencies, in silico analysis, orthologous and paralogous conservation. Subsequently Sanger sequencing was performed for 10 potential disease causing variants in order to confirm the presence of the variant and to evaluate co-segregation. Only one variant in exon 9 of the RBM20 gene (c.2714T > A, p.Met950Lys, NM_001334363) showed full co-segregation in the 7 affected family members resulting in a maximum 2-point LOD score of 2.1 and suggesting this as the pathogenic mutation responsible for the phenotype. Recently mutations in RBM20 have been linked to arrhythmogenic dilated cardiomyopathy caused by defective splicing of the giant sarcomere protein titin and abnormal calcium handling. Conclusions: We report the identification of a novel mutation in RBM20 by WES in a large pedigree with DCM.

2.
Eur J Med Genet ; : 103754, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31513939

RESUMO

Knowledge on the influence of specific genotypes on the phenotypic expression of hypertrophic cardiomyopathy (HCM) is emerging. The objective of this study was to evaluate the genotype-phenotype relation in HCM patients and to construct a score to predict the genetic yield based to improve counseling. Unrelated HCM patients who underwent genetic testing were included in the analysis. Multivariate logistic regression was performed to identify variables that predict a positive genetic test. A weighted score was constructed based on the odds ratios. In total, 378 HCM patients were included of whom 141 carried a mutation (global yield 37%), 181 were mutation negative and 56 only carried a variant of unknown significance. We identified age at diagnosis <45 years, familial HCM, familial sudden death, arrhythmic syncope, maximal wall thickness ≥20 mm, asymmetrical hypertrophy and the absence of negative T waves in the lateral ECG leads as significant predictors of a positive genetic test. When we included these values in a risk score we found very high correlation between the score and the observed genetic yield (Pearson r = 0.98). MYBPC3 mutation carriers more frequently suffered sudden cardiac death compared to troponin complex mutations carriers (p = 0.01) and a similar trend was observed compared to MYH7 mutation carriers (p = 0.08) and mutation negative patients (p = 0.11). To conclude, a simple score system based on clinical variables can predict the genetic yield in HCM index patients, aiding in counseling HCM patients. MYBPC3 mutation carriers had a worse outcome regarding sudden cardiac death.

3.
Eur J Med Genet ; : 103732, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31330203

RESUMO

Pathogenic variants in the BCAP31 gene have recently been associated with a severe congenital neurological phenotype, named DDCH after its key features: deafness, dystonia and central hypomyelination. BCAP31 is located at the Xq28 chromosomal region and only male individuals are currently known to be affected, the pathogenic variant being usually transmitted by healthy mothers. Here, we describe a three-year-old male child referred for severe developmental delay, failure to thrive, hearing loss and dyskinetic movements. After a conventional diagnostic workflow, including a normal array-CGH, a tentative diagnosis of dyskinetic cerebral palsy was retained. Clinical exome sequencing in the trio identified a small intragenic deletion in exon 8 of BCAP31, c.709_721del (p.Val237Trpfs*69), originated de novo and not previously reported. Based on the ACMG variant classification, this variant is predicted to be 'likely pathogenic'. Given the consistent phenotypical overlap with the subjects already ascertained with DDCH, we considered this variant to be clinically relevant for this child and causative of his condition.

4.
Proc Natl Acad Sci U S A ; 116(20): 9865-9870, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31036665

RESUMO

Congenital disorders of glycosylation (CDG) are a group of rare metabolic diseases, due to impaired protein and lipid glycosylation. We identified two patients with defective serum transferrin glycosylation and mutations in the MAGT1 gene. These patients present with a phenotype that is mainly characterized by intellectual and developmental disability. MAGT1 has been described to be a subunit of the oligosaccharyltransferase (OST) complex and more specifically of the STT3B complex. However, it was also claimed that MAGT1 is a magnesium (Mg2+) transporter. So far, patients with mutations in MAGT1 were linked to a primary immunodeficiency, characterized by chronic EBV infections attributed to a Mg2+ homeostasis defect (XMEN). We compared the clinical and cellular phenotype of our two patients to that of an XMEN patient that we recently identified. All three patients have an N-glycosylation defect, as was shown by the study of different substrates, such as GLUT1 and SHBG, demonstrating that the posttranslational glycosylation carried out by the STT3B complex is dysfunctional in all three patients. Moreover, MAGT1 deficiency is associated with an enhanced expression of TUSC3, the homolog protein of MAGT1, pointing toward a compensatory mechanism. Hence, we delineate MAGT1-CDG as a disorder associated with two different clinical phenotypes caused by defects in glycosylation.

5.
J Clin Immunol ; 39(3): 298-308, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30838481

RESUMO

DOCK2 is a guanine-nucleotide-exchange factor for Rac proteins. Activated Rac serves various cellular functions including the reorganization of the actin cytoskeleton in lymphocytes and neutrophils and production of reactive oxygen species in neutrophils. Since 2015, six unrelated patients with combined immunodeficiency and early-onset severe viral infections caused by bi-allelic loss-of-function mutations in DOCK2 have been described. Until now, the function of phagocytes, specifically neutrophils, has not been assessed in human DOCK2 deficiency. Here, we describe a new kindred with four affected siblings harboring a homozygous splice-site mutation (c.2704-2 A > C) in DOCK2. The mutation results in alternative splicing and a complete loss of DOCK2 protein expression. The patients presented with leaky severe combined immunodeficiency or Omenn syndrome. The novel mutation affects EBV-B cell migration and results in NK cell dysfunction similar to previous observations. Moreover, both cytoskeletal rearrangement and reactive oxygen species production are partially impaired in DOCK2-deficient neutrophils.

6.
Eur J Hum Genet ; 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30291340

RESUMO

Deletions on chromosome 15q14 are a known chromosomal cause of cleft palate, typically co-occurring with intellectual disability, facial dysmorphism, and congenital heart defects. The identification of patients with loss-of-function variants in MEIS2, a gene within this deletion, suggests that these features are attributed to haploinsufficiency of MEIS2. To further delineate the phenotypic spectrum of the MEIS2-related syndrome, we collected 23 previously unreported patients with either a de novo sequence variant in MEIS2 (9 patients), or a 15q14 microdeletion affecting MEIS2 (14 patients). All but one de novo MEIS2 variant were identified by whole-exome sequencing. One variant was found by targeted sequencing of MEIS2 in a girl with a clinical suspicion of this syndrome. In addition to the triad of palatal defects, heart defects, and developmental delay, heterozygous loss of MEIS2 results in recurrent facial features, including thin and arched eyebrows, short alae nasi, and thin vermillion. Genotype-phenotype comparison between patients with 15q14 deletions and patients with sequence variants or intragenic deletions within MEIS2, showed a higher prevalence of moderate-to-severe intellectual disability in the former group, advocating for an independent locus for psychomotor development neighboring MEIS2.

7.
Am J Med Genet A ; 176(9): 1897-1909, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30088852

RESUMO

Pathogenic variants account for 4 to 41% of patients with intellectual disability (ID) or developmental delay (DD). In Sub-Saharan Africa, the prevalence of ID is thought to be higher, but data in Central Africa are limited to some case reports. In addition, clinical descriptions of some syndromes are not available for this population. This study aimed at providing an estimate for the fraction of ID/DD for which an underlying etiological genetic cause may be elucidated and provide insights into their clinical presentation in special institutions in a Central African country. A total of 127 patients (33 females and 94 males, mean age 10.03 ± 4.68 years), were recruited from six institutions across Kinshasa. A clinical diagnosis was achieved in 44 but molecular confirmation was achieved in 21 of the 22 patients with expected genetic defect (95% clinical sensitivity). Identified diseases included Down syndrome (15%), submicroscopic copy number variants (9%), aminoacylase deficiency (0.8%), Partington syndrome in one patient (0.8%) and his similarly affected brother, X-linked syndromic Mental Retardation type 33 (0.8%), and two conditions without clear underlying molecular genetic etiologies (Oculo-Auriculo-Vertebral and Amniotic Bands Sequence). We have shown that genetic etiologies, similar to those reported in Caucasian subjects, are a common etiologic cause of ID in African patients from Africa. We have confirmed the diagnostic utility of clinical characterization prior to genetic testing. Finally, our clinical descriptions provide insights into the presentation of these genetic diseases in African patients.

8.
Clin Case Rep ; 6(8): 1557-1560, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30147904

RESUMO

Placental mesenchymal dysplasia (PMD) occurs in about 1 in 5000 pregnancies. The differential diagnosis between PMD and partial mole is difficult on ultrasound scan, and karyotyping plays a key role in distinguishing PMD from partial mole. Our report is the first to report on the discordancy for PMD in a monochorionic setting.

9.
J Clin Invest ; 128(9): 3957-3975, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-29969437

RESUMO

Biallelic loss-of-function (LOF) mutations of the NCF4 gene, encoding the p40phox subunit of the phagocyte NADPH oxidase, have been described in only 1 patient. We report on 24 p40phox-deficient patients from 12 additional families in 8 countries. These patients display 8 different in-frame or out-of-frame mutations of NCF4 that are homozygous in 11 of the families and compound heterozygous in another. When overexpressed in NB4 neutrophil-like cells and EBV-transformed B cells in vitro, the mutant alleles were found to be LOF, with the exception of the p.R58C and c.120_134del alleles, which were hypomorphic. Particle-induced NADPH oxidase activity was severely impaired in the patients' neutrophils, whereas PMA-induced dihydrorhodamine-1,2,3 (DHR) oxidation, which is widely used as a diagnostic test for chronic granulomatous disease (CGD), was normal or mildly impaired in the patients. Moreover, the NADPH oxidase activity of EBV-transformed B cells was also severely impaired, whereas that of mononuclear phagocytes was normal. Finally, the killing of Candida albicans and Aspergillus fumigatus hyphae by neutrophils was conserved in these patients, unlike in patients with CGD. The patients suffer from hyperinflammation and peripheral infections, but they do not have any of the invasive bacterial or fungal infections seen in CGD. Inherited p40phox deficiency underlies a distinctive condition, resembling a mild, atypical form of CGD.

10.
Ann Noninvasive Electrocardiol ; 23(5): e12548, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29709101

RESUMO

INTRODUCTION: Loss-of-function (LoF) mutations in the SCN5A gene cause multiple phenotypes including Brugada Syndrome (BrS) and a diffuse cardiac conduction defect. Markers of increased risk for sudden cardiac death (SCD) in LoF SCN5A mutation carriers are ill defined. We hypothesized that late potentials and fragmented QRS would be more prevalent in SCN5A mutation carriers compared to SCN5A-negative BrS patients and evaluated risk markers for SCD in SCN5A mutation carriers. METHODS: We included all SCN5A loss-of-function mutation carriers and SCN5A-negative BrS patients from our center. A combined arrhythmic endpoint was defined as appropriate ICD shock or SCD. RESULTS: Late potentials were more prevalent in 79 SCN5A mutation carriers compared to 39 SCN5A-negative BrS patients (66% versus 44%, p = .021), while there was no difference in the prevalence of fragmented QRS. PR interval prolongation was the only parameter that predicted the presence of a SCN5A mutation in BrS (OR 1.08; p < .001). Four SCN5A mutation carriers, of whom three did not have a diagnostic type 1 ECG either spontaneously or after provocation with a sodium channel blocker, reached the combined arrhythmic endpoint during a follow-up of 44 ± 52 months resulting in an annual incidence rate of 1.37%. CONCLUSION: LP were more frequently observed in SCN5A mutation carriers, while fQRS was not. In SCN5A mutation carriers, the annual incidence rate of SCD was non-negligible, even in the absence of a spontaneous or induced type 1 ECG. Therefore, proper follow-up of SCN5A mutation carriers without Brugada syndrome phenotype is warranted.

11.
PLoS Genet ; 14(1): e1007138, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357359

RESUMO

Congenital or neonatal cardiomyopathies are commonly associated with a poor prognosis and have multiple etiologies. In two siblings, a male and female, we identified an undescribed type of lethal congenital restrictive cardiomyopathy affecting the right ventricle. We hypothesized a novel autosomal recessive condition. To identify the cause, we performed genetic, in vitro and in vivo studies. Genome-wide SNP typing and parametric linkage analysis was done in a recessive model to identify candidate regions. Exome sequencing analysis was done in unaffected and affected siblings. In the linkage regions, we selected candidate genes that harbor two rare variants with predicted functional effects in the patients and for which the unaffected sibling is either heterozygous or homozygous reference. We identified two compound heterozygous variants in KIF20A; a maternal missense variant (c.544C>T: p.R182W) and a paternal frameshift mutation (c.1905delT: p.S635Tfs*15). Functional studies confirmed that the R182W mutation creates an ATPase defective form of KIF20A which is not able to support efficient transport of Aurora B as part of the chromosomal passenger complex. Due to this, Aurora B remains trapped on chromatin in dividing cells and fails to translocate to the spindle midzone during cytokinesis. Translational blocking of KIF20A in a zebrafish model resulted in a cardiomyopathy phenotype. We identified a novel autosomal recessive congenital restrictive cardiomyopathy, caused by a near complete loss-of-function of KIF20A. This finding further illustrates the relationship of cytokinesis and congenital cardiomyopathy.


Assuntos
Cardiomiopatias/congênito , Cardiomiopatias/genética , Cinesina/genética , Mutação de Sentido Incorreto , Feminino , Genes Letais , Heterozigoto , Humanos , Lactente , Morte do Lactente , Masculino , Linhagem , Gravidez , Recidiva , Irmãos
12.
Eur J Med Genet ; 61(1): 8-10, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29024827

RESUMO

Left ventricular non-compaction (cardiomyopathy) (LVN(C)) is a rare hereditary cardiac condition, resulting from abnormal embryonic myocardial development. While it mostly occurs as an isolated condition, association with other cardiovascular manifestations such as Ebstein anomaly (EA) has been reported. This congenital heart defect is characterized by downward displacement of the tricuspid valve and leads to diminished ventricular size and function. In an autosomal dominant LVN(C) family consisting of five affected individuals, of which two also presented with EA and three with mitral valve insufficiency, we pursued the genetic disease cause using whole exome sequencing (WES). WES revealed a missense variant (p.Leu113Val) in TPM1 segregating with the LVN(C) phenotype. TPM1 encodes α-tropomyosin, which is involved in myocardial contraction, as well as in stabilization of non-muscle cytoskeletal actin filaments. So far, LVN(C)-EA has predominantly been linked to pathogenic variants in MYH7. However, one sporadic LVN(C)-EA case with a de novo TPM1 variant has recently been described. We here report the first LVN(C)-EA family segregating a pathogenic TPM1 variant, further establishing the association between EA predisposition and TPM1-related LVN(C). Consequently, we recommend genetic testing for both MYH7 and TPM1 in patients or families in which LVN(C)/non-compaction and EA coincide.


Assuntos
Anomalia de Ebstein/genética , Cardiopatias Congênitas/genética , Mutação de Sentido Incorreto , Tropomiosina/genética , Pré-Escolar , Anomalia de Ebstein/patologia , Feminino , Cardiopatias Congênitas/patologia , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem
13.
Eur J Hum Genet ; 25(12): 1313-1323, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29255176

RESUMO

In inherited primary arrhythmia syndromes (PAS) and cardiomyopathies (CMP), the yield of genetic testing varies between 20 and 75% in different diseases according to studies performed in the pre next-generation sequencing (NGS) era. It is unknown whether retesting historical negative samples with NGS techniques is worthwhile. Therefore, we assessed the value of NGS-based panel testing in previously genotype negative-phenotype positive probands. We selected 107 patients (47 PAS and 60 CMP) with a clear phenotype who remained genotype negative after genetic analysis of the main genes implicated in their specific phenotype. Targeted sequencing of the coding regions of 71 PAS- and CMP-related genes was performed. Variant interpretation and classification was done according to a cardiology-specific scoring algorithm ('Amsterdam criteria') and the ACMG-AMP criteria. Co-segregation analysis was performed when DNA and clinical data of family members were available. Finally, a genetic diagnosis could be established in 21 patients (20%), 5 PAS (11%) and 16 CMP (27%) patients, respectively. The increased detection rate was due to sequencing of novel genes in 52% of the cases and due to technical failures with the historical analysis in 48%. A total of 118 individuals were informed about their carrier state and either reassured or scheduled for proper follow-up. To conclude, genetic retesting in clinically overt PAS and CMP cases, who were genotype negative with older techniques, resulted in an additional genetic diagnosis in up to 20% of the cases. This clearly supports a policy for genetic retesting with NGS-based panels.


Assuntos
Arritmias Cardíacas/genética , Cardiomiopatias/genética , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Arritmias Cardíacas/diagnóstico , Cardiomiopatias/diagnóstico , Loci Gênicos , Testes Genéticos/normas , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Polimorfismo Genético , Sensibilidade e Especificidade , Análise de Sequência de DNA/normas , Síndrome
14.
Eur J Paediatr Neurol ; 21(5): 745-753, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28495245

RESUMO

INTRODUCTION: Fetal akinesia deformation sequence (FADS) or arthrogryposis multiplex congenita (AMC) is characterized by clinical ambiguity and genetic heterogeneity, hampering genetic diagnosis via traditional sequencing methods. Next generation sequencing (NGS) of all known disease-causing genes offers an elegant solution to identify the genetic etiology of AMC/FADS in a diagnostic setting. METHODS: An in-house developed disease-associated gene panel was conducted in two unrelated fetuses with FADS. First, a de novo analysis was performed on the entire disease-associated gene panel. If no pathogenic mutation was identified, analysis of variants retained in a specific subpanel with arthrogryposis/fetal akinesia-causing genes was performed. RESULTS: In the first family, FADS relates to a homozygous c.484G > A (p.Glu162Lys) mutation in the gene RAPSN. The second case concerns a sporadic patient with brain anomalies and arthrogryposis due to a de novo hemizygous c.498C > T splice-site mutation in the pyruvate dehydrogenase-alpha 1 (PDHA1) gene. DISCUSSION: NGS facilitated genetic diagnosis, and hence genetic counseling, for both families with AMC/FADS. Biallelic RAPSN mutations typically result in congenital myasthenia syndrome, or occasionally in FADS. This is the first report attributing the RAPSN mutation c.484G > A, identified in a homozygous state in patient 1, to FADS. The second patient represents the first case of AMC due to a PDHA1 mutation, advocating that pyruvate dehydrogenase deficiency should be considered in the differential diagnosis of fetal akinesia. This study illustrates the relevance of a disease-associated-gene panel as a diagnostic tool in pregnancies complicated by this genetically heterogeneous condition.


Assuntos
Artrogripose/genética , Proteínas Musculares/genética , Mutação/genética , Piruvato Desidrogenase (Lipoamida)/genética , Artrogripose/diagnóstico , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Recém-Nascido , Masculino , Análise de Sequência de DNA
15.
Heart Rhythm ; 14(3): 376-382, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28212739

RESUMO

BACKGROUND: Long QT syndrome (LQTS) is characterized by reduced penetrance and variable QT prolongation over time, resulting in an estimate of 25% carriers of a pathogenic mutation with a normal corrected QT (QTc) interval on the resting electrocardiogram (ECG). OBJECTIVE: The purpose of this study was to test the hypothesis that an individualized corrected QT interval derived from 24-hour Holter data more accurately predicts carriage of a pathogenic LQTS mutation than did QT derived from a standard 12-lead ECG and corrected using the Bazett formula (QTc interval). METHODS: Carriers of a pathogenic LQTS mutation and their genotype-negative family members who had both resting ECG and Holter recordings available were included. Automated and manual measurements of QTc were performed. QTi was derived from 24-hour Holter recordings and defined as the QT value at the intersection of an RR interval of 1000 ms, with the linear regression line fitted through QT-RR data points of each individual patient. RESULTS: In total, 69 patients with LQTS (23 long QT type 1, 39 long QT type 2, and 7 long QT type 3) and 55 controls were selected. Demographic characteristics were comparable. A comparison of the receiver operating characteristic curves indicates that the test added diagnostic value compared to manual measurement (P = .02) or automated measurement (P = .005). The diagnostic accuracy of manually measured QTc using conventional cutoff criteria was 72%, while it was 92% using a sex-independent QTi cutoff of 445 ms. This was caused by a 39% increase in sensitivity without compromising the specificity. CONCLUSION: QTi derived from Holter recordings is superior to conventional QTc measured from a standard 12-lead ECG in predicting the mutation carrier state in families with LQTS.


Assuntos
Precisão da Medição Dimensional , Eletrocardiografia Ambulatorial/métodos , Síndrome do QT Longo , Adulto , Feminino , Genótipo , Frequência Cardíaca , Humanos , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/genética , Síndrome do QT Longo/fisiopatologia , Masculino , Pessoa de Meia-Idade , Mutação , Variações Dependentes do Observador , Modelagem Computacional Específica para o Paciente , Melhoria de Qualidade , Curva ROC , Reprodutibilidade dos Testes
16.
J Allergy Clin Immunol ; 140(2): 543-552.e5, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28087229

RESUMO

BACKGROUND: Gain-of-function mutations in transmembrane protein 173 (TMEM173) encoding stimulator of interferon genes (STING) underlie a recently described type I interferonopathy called STING-associated vasculopathy with onset in infancy (SAVI). OBJECTIVES: We sought to define the molecular and cellular pathology relating to 3 individuals variably exhibiting the core features of the SAVI phenotype including systemic inflammation, destructive skin lesions, and interstitial lung disease. METHODS: Genetic analysis, conformational studies, in vitro assays and ex vivo flow-cytometry were performed. RESULTS: Molecular and in vitro data demonstrate that the pathology in these patients is due to amino acid substitutions at positions 206, 281, and 284 of the human STING protein. These mutations confer cGAMP-independent constitutive activation of type I interferon signaling through TBK1 (TANK-binding kinase), independent from the alternative STING pathway triggered by membrane fusion of enveloped RNA viruses. This constitutive activation was abrogated by ex vivo treatment with the janus kinase 1/2 inhibitor ruxolitinib. CONCLUSIONS: Structural analysis indicates that the 3 disease-associated mutations at positions 206, 281, and 284 of the STING protein define a novel cluster of amino acids with functional importance in the regulation of type I interferon signaling.


Assuntos
Inflamação/genética , Interferon Tipo I/genética , Proteínas de Membrana/genética , Adolescente , Adulto , Substituição de Aminoácidos , Criança , Feminino , Células HEK293 , Humanos , Interferon Tipo I/metabolismo , Masculino , Mutação , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais
19.
Eur J Hum Genet ; 24(1): 2-5, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26508566

RESUMO

We present, on behalf of EuroGentest and the European Society of Human Genetics, guidelines for the evaluation and validation of next-generation sequencing (NGS) applications for the diagnosis of genetic disorders. The work was performed by a group of laboratory geneticists and bioinformaticians, and discussed with clinical geneticists, industry and patients' representatives, and other stakeholders in the field of human genetics. The statements that were written during the elaboration of the guidelines are presented here. The background document and full guidelines are available as supplementary material. They include many examples to assist the laboratories in the implementation of NGS and accreditation of this service. The work and ideas presented by others in guidelines that have emerged elsewhere in the course of the past few years were also considered and are acknowledged in the full text. Interestingly, a few new insights that have not been cited before have emerged during the preparation of the guidelines. The most important new feature is the presentation of a 'rating system' for NGS-based diagnostic tests. The guidelines and statements have been applauded by the genetic diagnostic community, and thus seem to be valuable for the harmonization and quality assurance of NGS diagnostics in Europe.


Assuntos
Acreditação/legislação & jurisprudência , Doenças Genéticas Inatas/diagnóstico , Testes Genéticos/normas , Sequenciamento de Nucleotídeos em Larga Escala/normas , Proteínas/genética , Biomarcadores/metabolismo , Bases de Dados Genéticas , Europa (Continente) , Expressão Gênica , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Humanos , Achados Incidentais , Disseminação de Informação/legislação & jurisprudência , Consentimento Livre e Esclarecido , Projetos de Pesquisa/normas , Sensibilidade e Especificidade
20.
Acta Cardiol ; 70(6): 747-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26717233

RESUMO

We present a new mutation in KCNH2 (c.2038delG) resulting in a frameshift and premature truncation of the IKr channel protein in a large LQTS family with several sudden death cases. This mutation was initially missed by mutation scanning with DHPLC due to allelic dropout and only retrieved after repeat genetic testing with targeted capture and massive parallel sequencing. There was full penetrance of this mutation, only if an individualized QT correction derived from 24-hour Holter data was used. This case again underscores the importance of repeat genetic testing in robust cases of LQTS that remained genotype negative with mutation scanning techniques.


Assuntos
DNA/genética , Canais de Potássio Éter-A-Go-Go/genética , Predisposição Genética para Doença , Síndrome do QT Longo/genética , Mutação , Alelos , Análise Mutacional de DNA , Canal de Potássio ERG1 , Eletrocardiografia , Canais de Potássio Éter-A-Go-Go/metabolismo , Feminino , Testes Genéticos , Genótipo , Humanos , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/metabolismo , Pessoa de Meia-Idade , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA