Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(14): 147701, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35476482

RESUMO

Probing the universal low-temperature magnetic-field scaling of Kondo-correlated quantum dots via electrical conductance has proved to be experimentally challenging. Here, we show how to probe this in nonlinear thermocurrent spectroscopy applied to a molecular quantum dot in the Kondo regime. Our results demonstrate that the bias-dependent thermocurrent is a sensitive probe of universal Kondo physics, directly measures the splitting of the Kondo resonance in a magnetic field, and opens up possibilities for investigating nanosystems far from thermal and electrical equilibrium.

2.
Nano Lett ; 19(1): 506-511, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30566839

RESUMO

We report on the first measurement of the Seebeck coefficient in a tunnel-contacted and gate-tunable individual single-quantum dot junction in the Kondo regime, fabricated using the electromigration technique. This fundamental thermoelectric parameter is obtained by directly monitoring the magnitude of the voltage induced in response to a temperature difference across the junction, while keeping a zero net tunneling current through the device. In contrast to bulk materials and single molecules probed in a scanning tunneling microscopy (STM) configuration, investigating the thermopower in nanoscale electronic transistors benefits from the electric tunability to showcase prominent quantum effects. Here, striking sign changes of the Seebeck coefficient are induced by varying the temperature, depending on the spin configuration in the quantum dot. The comparison with numerical renormalization group (NRG) calculations demonstrates that the tunneling density of states is generically asymmetric around the Fermi level in the leads, both in the cotunneling and Kondo regimes.

3.
Phys Rev Lett ; 103(19): 197202, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-20365950

RESUMO

We present the first quantitative experimental evidence for the underscreened Kondo effect, an incomplete compensation of a quantized magnetic moment by conduction electrons, as originally proposed by Nozières and Blandin. The device consists of an even charge spin S=1 molecular quantum dot, obtained by electromigration of C60 molecules into gold nanogaps and operated in a dilution fridge. The persistence of logarithmic singularities in the low temperature conductance is demonstrated by a comparison to the fully screened configuration obtained in odd charge spin S=1/2 Coulomb diamonds. We also discover an extreme sensitivity of the underscreened Kondo resonance to the magnetic field that we confirm on the basis of numerical renormalization group calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...