Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 25(52): 12120-12136, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31461188

RESUMO

The local magnetic structure in the [FeIII (Tp)(CN)3 ]- building block was investigated by combining paramagnetic Nuclear Magnetic Resonance (pNMR) spectroscopy and polarized neutron diffraction (PND) with first-principle calculations. The use of the pNMR and PND experimental techniques revealed the extension of spin-density from the metal to the ligands, as well as the different spin mechanisms that take place in the cyanido ligands: Spin-polarization on the carbon atoms and spin-delocalization on the nitrogen atoms. The results of our combined density functional theory (DFT) and multireference calculations were found in good agreement with the PND results and the experimental NMR chemical shifts. Moreover, the ab-initio calculations allowed us to connect the experimental spin-density map characterized by PND and the suggested distribution of the spin-density on the ligands observed by NMR spectroscopy. Interestingly, significant differences were observed between the pseudo-contact contributions of the chemical shifts obtained by theoretical calculations and the values derived from NMR spectroscopy using a simple point-dipole model. These discrepancies underline the limitation of the point-dipole model and the need for more elaborate approaches to break down the experimental pNMR chemical shifts into contact and pseudo-contact contributions.

2.
J Am Chem Soc ; 140(39): 12521-12526, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30049208

RESUMO

A thermally activated delayed fluorescence (TADF) tetrametallic Cu(I) metallacycle A behaves as a conformationally adaptive preorganized precursor to afford, through straightforward and rational coordination-driven supramolecular processes, a variety of room-temperature solid-state luminescent polymetallic assemblies. Reacting various cyano-based building blocks with A, a homometallic Cu(I) 1D-helical coordination polymer C and Cu8M discrete circular heterobimetallic assemblies DM (M = Ni, Pd, Pt) are obtained. Their luminescence behaviors are studied, revealing notably the crucial impact of the spin-orbit coupling offered by the central M metal center on the photophysical properties of the heterobimetallic DM derivatives.

3.
Inorg Chem ; 57(6): 3399-3410, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29481066

RESUMO

Reactions in water of 4,5-dichlorophthalate (dcpa2-) with the heaviest lanthanide ions lead to a family of compounds with the general chemical formula [Ln2(dcpa)3(H2O)5·3H2O]∞, where Ln = Tb-Lu, Y. The synthesis, crystal structure, thermal behavior, and luminescent properties of this series of homonuclear compounds are described. Additionally, this family can be extended to isostructural heteronuclear compounds that can contain some light lanthanide ions and therefore present some original photophysical properties. These compounds show potential interest as multiemissive materials (visible and infrared light between 450 and 1600 nm) and could find application as luminescent bar codes.

4.
Dalton Trans ; 47(4): 1122-1130, 2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29265139

RESUMO

Herein, two new octahedral molybdenum cyanide cluster compounds, namely [{Ni(NH3)6}4{Ni2(NH3)8}1][Mo6Br6Q2(CN)6]3·12H2O, Q = S (1) and Se (2), have been synthesized as single crystals by slow diffusion of a solution of nickel chloride into aqueous ammonia solutions of a K2Cs2[Mo6Br6Q2(CN)6] molybdenum cyanide cluster-based compound. Both 1 and 2 were structurally characterized by single-crystal X-ray diffraction. They are isostructural and crystallize in the cubic system (Im3[combining macron]m (no. 229); Z = 2, a = 18.147(1) Å, and V = 5976(1) Å3 and a = 18.188(2) Å and V = 6016(2) Å3 for 1 and 2, respectively). 1 and 2 are based on the association of [Mo6Bri6Qi2(CN)a6]4- (Q = S, Se) cluster anions with Ni2+ dimer-based cubic [Ni2(NH3)8]4+ and octahedral [Ni(NH3)6]2+ cations. The structure is based on 2-fold interpenetrated [{Ni(NH3)6}4{Ni2(NH3)8}1][Mo6Br6Q2(CN)6]3 frameworks related to each other by [½, ½, ½] translation. The unit cell is based on a body-centered cubic framework of cubic [Ni2(NH3)8]4+. The [Mo6Bri6Qi2(CN)a6]4- (Q = S, Se) cluster units are located in the middle of the edges and at the center of the faces of the cell. The [{Ni(NH3)6}]2+ cations are located at the center of the cubes of the a/2 edge. The dimers [Ni2(NH3)8]4+ are stabilized by hydrogen bonds between the cyanide ligands of the cluster unit and the hydrogen atoms of the ammonia molecules. Both compounds exhibit a weak antiferromagnetic coupling within the [Ni2(NH3)8]4+ dimer entities at low temperatures together with a paramagnetic behavior originating from the cations of the octahedral [{Ni(NH3)6}]2+ complexes.

5.
Inorg Chem ; 56(23): 14540-14555, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29160703

RESUMO

The preparation and properties of novel ruthenium carbon-rich complexes [(Ph-C≡C-)2-nRu(dppe)2(-C≡C-bipyM(hfac)2)n] (n = 1, 2; M = CuII, MnII; bipy = 2,2'-bipyridin-5-yl) characterized by single-crystal X-ray diffraction and designed for molecular magnetism are reported. With the help of EPR spectroscopy, we show that the neutral ruthenium system sets up a magnetic coupling between two remote paramagnetic CuII units. More specifically, these copper compounds are unique examples of bimetallic and linear heterotrimetallic compounds for which a complete rationalization of the magnetic interactions could be made for exceptionally long distances between the spin carriers (8.3 Å between adjacent Cu and Ru centers, 16.6 Å between external Cu centers) and compared at two different redox states. Surprisingly, oxidation of the ruthenium redox-active metal coupling unit (MCU), which introduces an additional spin unit on the carbon-rich part, leads to weaker magnetic interactions. In contrast, in the simpler parent complexes bearing only one paramagnetic metal unit [Ph-C≡C-Ru(dppe)2-C≡C-bipyCu(hfac)2], one-electron oxidation of the ruthenium bis(acetylide) unit generates an interaction between the Cu and Ru spin carriers of magnitude comparable to that observed between the two far apart Cu ions in the above corresponding neutral trimetallic system. Evaluation and rationalization of this coupling with theoretical tools are in rational agreement with experiments for such complex systems.

6.
Sci Technol Adv Mater ; 18(1): 458-466, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28740562

RESUMO

We report the photoluminescence (PL) and cathodoluminescence (CL) properties of face-capped [Mo6Xi8La6]2- (X = Cl, Br, I; L = organic or inorganic ligands) cluster units. We show that the emission of Mo6 metal atom clusters depends not only on the nature of X and L ligands bound to the cluster and counter-cations, but also on the excitation source. Seven members of the AxMo6Xi8La6 series (A = Cs+, (n-C4H9)4N+, NH4+) were selected to evaluate the influence of counter-cations and ligands on de-excitation mechanisms responsible for multicomponent emission of cluster units. This study evaluates the ageing of each member of the series, which is crucial for further energy conversion applications (photovoltaic, lighting, water splitting, etc.).

7.
Chemistry ; 22(30): 10523-32, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-27355689

RESUMO

Reactions of [Rh(κ(2) -O,O-acac)(PMe3 )2 ] (acac=acetylacetonato) and α,ω-bis(arylbutadiynyl)alkanes afford two isomeric types of MC4 metallacycles with very different photophysical properties. As a result of a [2+2] reductive coupling at Rh, 2,5-bis(arylethynyl)rhodacyclopentadienes (A) are formed, which display intense fluorescence (Φ=0.07-0.54, τ=0.2-2.5 ns) despite the presence of the heavy metal atom. Rhodium biphenyl complexes (B), which show exceptionally long-lived (hundreds of µs) phosphorescence (Φ=0.01-0.33) at room temperature in solution, have been isolated as a second isomer originating from an unusual [4+2] cycloaddition reaction and a subsequent ß-H-shift. We attribute the different photophysical properties of isomers A and B to a higher excited state density and a less stabilized T1 state in the biphenyl complexes B, allowing for more efficient intersystem crossing S1 →Tn and T1 →S0 . Control of the isomer distribution is achieved by modification of the bis- (diyne) linker length, providing a fundamentally new route to access photoactive metal biphenyl compounds.

8.
Inorg Chem ; 55(6): 2870-81, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26930424

RESUMO

Electronic structures and magnetic properties of the binuclear bis(µ-oxo) U(IV)/U(IV) K2[{(((nP,Me)ArO)3tacn)U(IV)}2(µ-O)2] and U(V)/U(V) [{(((nP,Me)ArO)3tacn)U(V)}2(µ-O)2] (tacn = triazacyclononane, nP = neopentyl) complexes, exhibiting [U(µ-O)2U] diamond-core structural motifs, have been investigated computationally using scalar relativistic Density Functional Theory (DFT) combined with the Broken Symmetry (BS) approach for their magnetic properties. Using the B3LYP hybrid functional, the BS ground state of the pentavalent [U(V)(µ-O)2U(V)] 5f(1)-5f(1) complex has been found of lower energy than the high spin (HS) triplet state, thus confirming the antiferromagnetic character in agreement with experimental magnetic susceptibility measurements. The nonmagnetic character observed for the tetravalent K2[U(IV)(µ-O)2U(IV)] 5f(2)-5f(2) species is also predicted by our DFT calculations, which led practically to the same energy for the HS and BS states. As reported for related dioxo diuranium(V) systems, superexchange is likely to be responsible for the antiferromagnetic coupling through the π-network orbital pathway within the (µ-O)2 bridge, the dissymmetrical structure of the U2O2 core playing a determining role. In the case of the U(IV) species, our computations indicate that the K(+) counterions are likely to play a role for the observed magnetic property. Finally, the MO analysis, in conjunction with NPA and QTAIM analyses, clarify the electronic structures of the studied complexes. In particular, the fact that the experimentally attempted chemical oxidation of the U(V) species does not lead straightforwardly to binuclear complexes U(VI) is clarified by the MO analysis.

9.
Angew Chem Int Ed Engl ; 55(12): 3963-7, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26890339

RESUMO

We have determined by polarized neutron diffraction (PND) the low-temperature molecular magnetic susceptibility tensor of the anisotropic low-spin complex PPh4 [Fe(III) (Tp)(CN)3]⋅H2O. We found the existence of a pronounced molecular easy magnetization axis, almost parallel to the C3 pseudo-axis of the molecule, which also corresponds to a trigonal elongation direction of the octahedral coordination sphere of the Fe(III) ion. The PND results are coherent with electron paramagnetic resonance (EPR) spectroscopy, magnetometry, and ab initio investigations. Through this particular example, we demonstrate the capabilities of PND to provide a unique, direct, and straightforward picture of the magnetic anisotropy and susceptibility tensors, offering a clear-cut way to establish magneto-structural correlations in paramagnetic molecular complexes.

10.
Inorg Chem ; 54(12): 6043-54, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26024151

RESUMO

For the first time, hexanuclear complexes with general chemical formula [Ln6O(OH)8(NO3)6(H2O)n](2+) with n = 12 for Ln = Sm-Lu and Y and n = 14 for Ln = Pr and Nd were stabilized as nanoaggregates in ethylene glycol (EG). These unprecedented nanoaggregates were structurally characterized by (89)Y and (1)H NMR spectroscopy, UV-vis absorption and luminescence spectroscopies, electrospray ionization mass spectrometry, diffusion ordered spectroscopy, transmission electron microscopy, and dynamic light scattering. These nanoaggregates present a 200 nm mean solvodynamic diameter. In these nanoaggregates, hexanuclear complexes are isolated and solvated by EG molecules. The replacement of ethylene glycol by 2-hydroxybenzyl alcohol provides new nanoaggregates that present an antenna effect toward lanthanide ions. This results in a significant enhancement of the luminescence properties of the aggregates and demonstrates the suitability of the strategy for obtaining highly tunable luminescent solutions.

11.
J Mol Model ; 21(4): 71, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25750020

RESUMO

DFT calculations were carried out on the homo- and hetero-bimetallic model wires [(η(5)-C5H5)(dpe)Fe-C≡C-C6H4-C≡C-Fe(dpe)(η(5)-C5H5)] (1'), [(η(7)-C7H7)(dpe)Mo-C≡C-C6H4-C≡C-Mo(dpe)(η(7)-C7H7)] (2'), and [(η(5)-C5H5)(dpe)Fe-C≡C-C6H4-C≡C-Mo(dpe)(η(7)-C7H7)] (3') used to tentatively mimic [(η(5)-C5Me5)(dppe)Fe-C≡C-C6H4-C≡C-Fe(dppe)(η(5)-C5Me5)] (1), [(η(7)-C7H7)(dppe)Mo-C≡C-C6H4-C≡C-Mo(dppe)(η(7)-C7H7)] (2), and [(η(5)-C5Me5)(dppe)Fe-C≡C-C6H4-C≡C-Mo(dppe)(η(7)-C7H7)] (3), respectively in order to analyze the similarities and the differences between models and real compounds previously theoretically and experimentally studied, with respect to their molecular structures and properties. A comparison of the metrical data computed for the models and the real systems shows some slight discrepancy between the metal-ancillary ligand distances - shorter distances are observed in the formers - but comparable metal-Cα and Cα-Cß distances. Incidentally, distances computed for the model molecules match more closely those measured experimentally. Replacement of a dppe ligand tethered to the metal centers by a dpe group does not much alter the electronic properties. Therefore, overall, data obtained for the Mo2 models 2' compare rather well with those computed for the real systems 2. Larger alteration is noticed when Cp* is substituted by Cp, even if the general trends observed for the real iron species 1 and 3 are kept overall for the iron models 1' and 3'. Indeed, the smaller electron-donor properties of Cp affect somewhat the nodal properties of the HOMOs (less metallic character) and increase the HOMO-LUMO gaps and the ionization potentials. Despite this, similarities between models and real compounds largely overtake differences. It is shown that calculations on models provide quite acceptable results.

12.
Inorg Chem ; 53(15): 8172-88, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-25033266

RESUMO

The association of a dithienylethene (DTE) system with ruthenium carbon-rich systems allows reaching sophisticated and efficient light- and electro-triggered multifunctional switches R-[Ru]-C≡C-DTE-C≡C-[Ru]-R, featuring multicolor electrochromism and electrochemical cyclization at remarkably low voltage. The spin density on the DTE ligand and the energetic stabilization of the system upon oxidation could be manipulated to influence the closing event, owing to the noninnocent behavior of carbon-rich ligands in the redox processes. A combination of spectroscopic (UV-vis-NIR-IR and EPR) and electrochemical studies, with the help of quantum chemical calculations, demonstrates that one can control and get a deeper understanding of the electrochemical ring closure with a slight modification of ligands remote from the DTE unit. This electrochemical cyclization was established to occur in the second oxidized state (EEC mechanism), and the kinetic rate constant in solution was measured. Importantly, these complexes provide an unprecedented experimental means to directly probe the remarkable efficiency of electronic (spin) delocalization between two trans carbon-rich ligands through a metal atom, in full agreement with the theoretical predictions. In addition, when no cyclization occurs upon oxidation, we could achieve a redox-triggered magnetic switch.

13.
Inorg Chem ; 53(13): 7055-69, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24921971

RESUMO

We present a detailed photophysical study and theoretical analysis of 2,5-bis(arylethynyl)rhodacyclopenta-2,4-dienes (1a­c and 2a­c) and a 2,5-bis(arylethynyl)iridacyclopenta-2,4-diene (3). Despite the presence of heavy atoms, these systems display unusually intense fluorescence from the S1 excited state and no phosphorescence from T1. The S1 → T1 intersystem crossing (ISC) is remarkably slow with a rate constant of 108 s­1 (i.e., on the nanosecond time scale). Traditionally, for organometallic systems bearing 4d or 5d metals, ISC is 2­3 orders of magnitude faster. Emission lifetime measurements suggest that the title compounds undergo S1 → T1 interconversion mainly via a thermally activated ISC channel above 233 K. The associated experimental activation energy is found to be ΔHISC = 28 kJ mol­1 (2340 cm­1) for 1a, which is supported by density functional theory (DFT) and time-dependent DFT calculations [ΔHISC(calc.) = 11 kJ mol­1 (920 cm­1) for 1a-H]. However, below 233 K a second, temperature-independent ISC process via spin­orbit coupling occurs. The calculated lifetime for this S1 → T1 ISC process is 1.1 s, indicating that although this is the main path for triplet state formation upon photoexcitation in common organometallic luminophores, it plays a minor role in our Rh compounds. Thus, the organic π-chromophore ligand seems to neglect the presence of the heavy rhodium or iridium atom, winning control over the excited-state photophysical behavior. This is attributed to a large energy separation of the ligand-centered highest occupied molecular orbital (HOMO) and lowest unoccupied MO (LUMO) from the metal-centered orbitals. The lowest excited states S1 and T1 arise exclusively from a HOMO-to-LUMO transition. The weak metal participation and the cumulenic distortion of the T1 state associated with a large S1­T1 energy separation favor an "organic-like" photophysical behavior.

14.
Inorg Chem ; 53(5): 2361-3, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24528003

RESUMO

A ruthenium carbon-rich-based ligand that brings redox reversibility to a dysprosium-based single-molecule magnet is reported. Long-distance perturbation of the 4f ion is achieved upon oxidation, resulting in an overall enhancement of the magnetic slow relaxation.

15.
Inorg Chem ; 52(14): 8030-9, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23790155

RESUMO

A quantum chemical study of the photocatalytic dimerization of α-methylstyrene catalyzed by a dinuclear ruthenium-palladium complex was performed at the DFT/TD-DFT level in order to find the key steps of the catalytic reaction. This study reveals that the second insertion of α-methylstyrene is the rate-determining step and that it proceeds via triplet excited states of an intermediate complex. These excited states have geometries significantly different from that of the reactant, especially within the coordination sphere of the Pd unit. Indeed, one Pd-carbon bond is considerably lengthened, favoring the insertion process. These results open up the possibilities to optimize the process by fine modulation of the catalyst structure.

16.
Chemistry ; 19(18): 5742-57, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23447398

RESUMO

Treatment of [Cp*(dppe)Fe-C≡C-TTFMe3] (1) with Ag[PF6] (3 equiv) in DMF provides the binuclear complex [Cp*(dppe)Fe=C=C=TTFMe2 =CH-CH=TTFMe2 =C=C=Fe(dppe)Cp*][PF6]2 (2[PF6 ]2) isolated as a deep-blue powder in 69 % yield. EPR monitoring of the reaction and comparison of the experimental and calculated EPR spectra allowed the identification of the radical salt [Cp*(dppe)Fe=C=C=TTFMe2 =CH][PF6]2 ([1-CH][PF6]) an intermediate of the reaction, which results from the activation of the methyl group attached in vicinal position with respect to the alkynyl-iron on the TTF ligand by the triple oxidation of 1 leading to its deprotonation by the solvent. The dimerization of [1-CH][PF6] through carbon-carbon bond formation provides 2[PF6]2. The cyclic voltammetry (CV) experiments show that 2[PF6]2 is subject to two sequential well-reversible one-electron reductions yielding the complexes 2[PF6] and 2. The CV also shows that further oxidation of 2[PF6]2 generates 2[PF6]n (n=3-6) at the electrode. Treatment of 2[PF6]2 with KOtBu provides 2[PF6] and 2 as stable powders. The salts 2[PF6] and 2[PF6]2 were characterized by XRD. The electronic structures of 2(n+) (n=0-2) were computed. The new complexes were also characterized by NMR, IR, Mössbauer, EPR, UV/Vis and NIR spectroscopies. The data show that the three complexes 2[PF6]n are iron(II) derivatives in the ground state. In the solid state, the dication 2(2+) is diamagnetic and has a bis(allenylidene-iron) structure with one positive charge on each iron building block. In solution, as a result of the thermal motion of the metal-carbon backbone, the triplet excited state becomes thermally accessible and equilibrium takes place between singlet and triplet states. In 2[PF6], the charge and the spin are both symmetrically distributed on the carbon bridge and only moderately on the iron and TTFMe2 electroactive centers.

17.
Inorg Chem ; 50(24): 12601-22, 2011 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-22070368

RESUMO

The role of the nitrogen atom on the electronic and magnetic couplings of the mono-oxidized and bi-oxidized pyridine-containing complex models [2,6-{Cp(dpe)Fe-C≡C-}(2)(NC(5)H(3))](n+) and [3,5-{Cp(dpe)Fe-C≡C-}(2)(NC(5)H(3))](n+) is theoretically tackled with the aid of density-functional theory (DFT) and multireference configuration interaction (MR-CI) calculations. Results are analyzed and compared to those obtained for the reference complex [1,3-{Cp*(dppe)Fe-C≡C-)}(2)(C(6)H(4))](n+). The mono-oxidized species show an interesting behavior at the borderline between spin localization and delocalization and one through-bond communication path among the two involving the central ring, is favored. Investigation of the spin state of the dicationic complexes indicates ferromagnetic coupling, which can differ in magnitude from one complex to the other. Very importantly, electronic and magnetic properties of these species strongly depend not only upon the location of the nitrogen atom in the ring versus that of the organometallic end-groups but also upon the architectural arrangement of one terminus, with respect to the other and/or vis-à-vis the central ring. To help validate the theoretical results, the related families of compounds [1,3-{Cp*(dppe)Fe-C≡C-)}(2)(C(6)H(4))](n+), [2,6-{Cp*(dppe)Fe-C≡C-}(2)(NC(5)H(3))](n+), [3,5-{Cp*(dppe)Fe-C≡C-}(2)(NC(5)H(3))](n+) (n = 0-2) were experimentally synthesized and characterized. Electrochemical, spectroscopic (infrared (IR), Mössbauer), electronic (near-infrared (NIR)), and magnetic properties (electron paramagnetic resonance (EPR), superconducting quantum interference device (SQUID)) are discussed and interpreted in the light of the theoretical data. The set of data obtained allows for many strong conclusions to be drawn. A N atom in the long branch increases the ferromagnetic interaction between the two Fe(III) spin carriers (J > 500 cm(-1)), whereas, when placed in the short branch, it dramatically reduces the magnetic exchange in the di-oxidized species (J = 2.14(5) cm(-1)). In the mixed-valence compounds, when the N atom is positioned on the long branch, the intermediate excited state is higher in energy than the different ground-state conformers and the relaxation process provides exclusively the Fe(II)/Fe(III) localized system (H(ab) ≠ 0). Positioning the N atom on the short branch modifies the energy profile and the diabatic mediating state lies just above the reactant and product diabatic states. Consequently, the LMCT transition becomes less energetic than the MMCT transition. Here, the direct coupling does not occur (H(ab) = 0) and only the coupling through the bridge (c) and the reactant (a) and product (b) diabatic states is operating (H(ac) = H(bc) ≠ 0).

18.
Chemistry ; 17(20): 5561-77, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21495098

RESUMO

The new [(η(2)-dppe)(η(5)-C(5)Me(5))Fe(C≡C-1,4-C(6)H(4)C≡C)Ru(η(2) -dppe)(2) C≡C(C(6)H(5))] complex (3-H) and its hexanuclear relative [{(η(2)-dppe)(η(5)-C(5) Me(5))Fe(C≡C-1,4-C(6)H(4)-C≡C)Ru(η(2)-dppe)(2)(C≡C-1,4-C(6)H(4)C≡C)(3)(1,3,5-C(6)H(3))] (4) have been synthesized and characterized. The linear and cubic nonlinear optical properties of these compounds in their various redox states have been studied along with those of the analogous complexes [(η(2)-dppe)(η(5)-C(5)Me(5))Fe(C≡C-1,4-C(6)H(4)C≡C)Ru(η(2)-dppe)(2)R][PF(6)](n) (n=0-2; R=Cl, 2-Cl; R=C≡C(4-C(6)H(4)NO(2)),3-NO(2)). We show that molecules exhibiting large third-order nonlinearities can be obtained by assembling such dinuclear Fe/Ru units around a central 1,3,5-substituted C(6)H(3) core. These data are discussed with a particular emphasis on the large changes in their nonlinear (third-order) optical properties brought about by oxidation. Experimental and computational (DFT) evidence for the electronic structures of these compounds in their various redox states is presented using 3-H(n+) as a prototypical model. Single crystals of this complex in its mono-oxidized state (3-H[PF(6)]) provide the first structural data for such carbon-rich Fe(III) /Ru(II) heteronuclear mixed-valent (MV) systems. Although experimental evidence for the structure of the dioxidized states was more difficult to obtain, the theoretical study reveals that 3-H(2+) can be considered to have a biradical structure with two independent spins. The low-lying absorptions that appear in the near-infrared (NIR) range for all these compounds following oxidation correspond to intervalence charge-transfer (IVCT) bands for the mono-oxidized states and to ligand-to-metal charge-transfer (LMCT) transitions for the dioxidized states. These play a crucial role in the strong optical modulation achieved. The possibility of accessing additional states with distinct linear or nonlinear optical properties is also briefly discussed.

19.
J Am Chem Soc ; 133(16): 6174-6, 2011 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-21462984

RESUMO

We describe how the association between an ytterbium ion and a ruthenium carbon-rich complex enables the first switching of the near-IR Yb(III) luminescence by taking advantage of the redox commutation of the carbon-rich antenna.

20.
Dalton Trans ; 40(21): 5643-58, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21394370

RESUMO

In this Perspective, we highlight the non-innocent behaviour of the bridging ligand in organometallic polynuclear metallic complexes displaying metal-carbon σ bonds between the metallic units and a strongly coupled conjugated carbon-rich bridging ligand. With the help of representative experimental and theoretical studies on polymetallic systems, but also on monometallic complexes, we point out that the level of implication of the carbon rich ligand in the redox processes is very sensitive to the nature of (i) the metal(s), (ii) the ancillary ligands and (iii) the carbon-rich ligand itself, and that this participation is frequently found to be major. Consequently, the general denomination M((n + 1)) that is usually used for oxidized species gives the picture that only the metal density is affected, which is misleading. Moreover, for polymetallic species, these elements make the mixed valence denomination and the use of standard methodologies to rationalize intramolecular electron transfer, such as the Hush model inaccurate. Indeed, these theoretical treatments of mixed-valent complexes have at their core the assumption of metal-based redox state changes. Quantum mechanical calculations, coupled with spectroscopic methods, such as EPR spectroscopy, turn out to be a valuable suite of tools to both identify and better describe those systems with appreciable ligand redox non-innocent character. Finally, some examples and perspectives of applications for this carbon-rich type of complexes that take advantage of their peculiar electronic structure are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA